в
— диаграмма состояний схемы на двухвходовых элементах «И-НЕ»;г
— диаграмма состояний схемы на двухвходовых элементах «ИЛИ-НЕ»Если в схеме на рис. 16.2,
Запоминать эти диаграммы нет необходимости, если обратиться к рис. 15.8. Из него следует, что единица на входе «И-НЕ» и ноль на входе «ИЛИ-НЕ» являются разрешающими уровнями, следовательно, при этих уровнях на управляющих входах наша схема будет функционировать, как если бы входы элемента были объединены. При запрещающих же уровнях на входе уровень на выходе будет устанавливаться так, как если бы никаких RC-цепочек не существовало.
Простейшее применение схемы с управлением — решение задачи приостановки генератора на время переходных процессов при включении питания, для чего по управляющему входу нужно поставить интегрирующую RC-цепочку, как в схеме триггеров с предустановкой (см. далее рис. 16.9). Другое применение — генерация пачек импульсов с меньшей частотой, если управляющий вход одного генератора присоединить к выходу другого. На рис. 16.3 показана схема звуковой сигнализации на одной микросхеме 561ЛА7 и одном транзисторе. Это пример случая, когда требуется определенный логический уровень при выключенной генерации, чтобы избежать протекания постоянного тока через динамик и не ставить при этом разделительный конденсатор.
Рис. 16.3.
Схема выдает сигнал около 500 Гц с периодом повторения около 0,5 с, если на управляющий вход подать сигнал высокого уровня. При сигнале низкого уровня на управляющем входе на выходе будет также низкий уровень, и постоянный ток через динамик не течет. Транзисторный каскад лучше питать нестабилизированным напряжением от входа стабилизатора питания микросхем, потому что тогда достаточно мощные импульсы тока через динамик будут фильтроваться стабилизатором и не окажут вредного воздействия на остальные элементы схемы. Динамик можно заменить и на пьезоэлектрический звуковой излучатель, тогда мощный транзистор ставить необязательно (но вовсе без транзистора не обойтись, звук будет слишком тихим). А о пьезоэффекте мы сейчас подробнее и поговорим.
Точность поддержания частоты в приведенных схемах невысока. Частота «уходит» примерно на 10–20 % при изменении напряжения питания от 5 до 15 В и в достаточно большой степени зависит от температуры (использование высокостабильных резисторов и конденсаторов не поможет, и потому нецелесообразно). Чтобы избавиться от этого эффекта, необходимо применить кварцевый резонатор, в просторечии — просто кварц.
Здесь не место для того, чтобы подробно излагать принципы работы кварцевого (или реже употребляемого керамического, который обладает несколько меньшей стабильностью) резонатора — это нужно делать в курсе радиотехники в сравнении со свойствами колебательного контура. Вкратце дело заключается в следующем: если приложить напряжение к кварцевому параллелепипеду, выпиленному из целого кристалла в определенной ориентации относительно его осей, то кристалл деформируется — очень не намного, но все же достаточно, чтобы на этом принципе даже делать прецизионные манипуляторы для электронных микроскопов или выталкивающие жидкость поршни в струйных принтерах
Получается, что если мы включим такой кристалл в схему с обратной связью, то она начнет генерировать колебания, причем частота генерации будет зависеть исключительно от размеров кристалла — и ни от чего больше! Как, спросите вы, даже от температуры не будет зависеть? Вот именно —