Читаем Занимательная электроника полностью

Мультиплексором называют схему, которая соединяет единственный входной вывод напрямую с одним из нескольких выходных (как правило, четырех или восьми), в зависимости от поданного на нее двоичного кода (схема «1 —> 8»). Соответственно, демультиплексор осуществляет обратную операцию — пропускает сигнал с одного из нескольких выводов на единственный выходной (схема «8 —> 1»). Фишка состоит в том, что в КМОП-версии они прекрасно коммутируют не только цифровые, но и аналоговые сигналы, причем в обе стороны!

Такие мультиплексоры/демультиплексоры делают на ключах — специальным образом включенных полевых транзисторах по технологии КМОП. Простейший такой ключ изображен на рис. 15.9, а. Выпускаются также и микросхемы, содержащие просто наборы отдельных ключей, — например, 590КН2 и аналогичные, мы еще с ними столкнемся. Такие ключи широко используются в составе микросхем средней и большой степени интеграции — в аналого-цифровых и цифроаналоговых преобразователях, например. Также они практически заменили механические переключатели в коммутаторах телевизионных каналов, используются в цифровых переменных резисторах, электронных реле и т. д.

На рис. 15.9, б приведена для примера схема разводки выводов микросхемы 561КП2, которая представляет собой восьмиканальный мультиплексор/демультиплексор (561КП1 делает то же самое, но содержит два четырехканальных мультиплексора).

Эта микросхема коммутирует один из выводов, обозначенных как 0–7, к выводу Q, в зависимости от поданного на управляющие входы А-С двоичного кода. Очень важную функцию осуществляет вход Е (с инверсией, т. е. активный уровень на нем — низкий) — это вход разрешения, и если на нем присутствует высокий уровень, то все каналы размыкаются.



Рис. 15.9.Использование КМОП-ключей:

а — простейший униполярный ключ,

б — разводка выводов мультиплексора/демультиплексора 561КП2


Специально для коммутации переменных аналоговых сигналов у 561КП2 предусмотрено подключение отрицательного питания (вывод 7), в случае цифровых же сигналов этот вывод коммутируется просто на «землю». Размах питания между выводами 7 и 16 не может превышать предельно допустимого для однополярного питания 561-й серии значения 15–18 В, т. е. двухполярное питание возможно примерно до ±8 В. Однако уровень сигнала управления (как по входам А-С, так и по Е) при этом отсчитывается от «цифровой земли», которая установлена потенциалом вывода 8. При этом аналоговый сигнал по амплитуде может достигать почти значений питания, только для получения минимума искажений коммутируемые токи также должны быть малы.

ГЛАВА 16

Устройства на логических схемах

Мультивибраторы, формирователи, триггеры, счетчики…


Сердце молодого гасконца билось так сильно, что готово было разорвать ему грудь Видит бог, не от страха — он и тени страха не испытывал — а от возбуждения.

А. Дюма. Три мушкетера


Из описания устройства логических элементов в главе 15 ясно, что любой логический элемент есть в сущности не что иное, как усилитель. Мы даже упоминали, что логические микросхемы иногда используют в качестве аналогового усилителя.

В самом деле, с формальной точки зрения между простым многокаскадным усилителем без обратной связи и логическим инвертором разницы нет никакой. Правда, аналоговым усилителем логический элемент будет очень плохим — коэффициент усиления по напряжению у КМОП-элементов составляет всего несколько десятков, в отличие от сотен тысяч и миллионов у операционных усилителей и компараторов, и даже введение обратной связи не поможет получить качественный сигнал. Если кого-то интересует такое экзотическое использование логических микросхем, то в упоминавшейся книге [18] есть схема линейного усилителя на КМОП-элементах, можете поэкспериментировать.

Но зато логические микросхемы идеально приспособлены для работы в схемах, так сказать, «полуаналоговых» — т. е. схемах генераторов, формирователей и преобразователей импульсов. Ими мы сначала и займемся.


Генераторы


До сих пор мы рассматривали только два способа построения генераторов колебаний: один раз это был релаксационный генератор коротких импульсов на однопереходном транзисторе (см. рис. 10.3) для фазового управления тиристорами, второй раз — аналоговый генератор синусоидальных колебаний на ОУ (см. рис. 12.6). Был еще «зуммер» из реле, приведенный на рис. 7.3. Теперь рассмотрим релаксационные генераторы прямоугольных импульсов на логических микросхемах.

* * *

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки