Читаем Занимательная электроника полностью

Простота Arduino во многом обусловлена тем, что практически все действия в программе осуществляются в ее главном цикле. Но такая простота оборачивается недостаточной надежностью работы — «правильно» запрограммированный контроллер работает почти исключительно через прерывания. Например, неверно заставлять программу отслеживать нажатие кнопки в главном цикле и убирать дребезг путем простых временных задержек, как это делается в распространенном примере для начинающих[54]. Когда контроллер основное время занят последовательным отслеживанием происходящих событий, он запросто может потерять какое-то из них. Так поступали в семидесятые годы, когда контроллеры были намного примитивнее сегодняшних. В «правильной» программе состояние кнопки отслеживается по внешнему прерыванию, а дребезг убирается его запретом и последующим разрешением по прерыванию таймера. Только так эти действия не могут помешать никаким другим процедурам в программе.

В Arduino просто эксплуатируется факт, что современные микроконтроллеры работают очень быстро, но, по мере усложнения программы, вы довольно скоро упретесь в порог этого быстродействия и не будете понимать, как из этой ситуации вывернуться. На Habrahabr.ru один критик платформы писал, что «вы можете всю жизнь формировать задержки с помощью delay-функций и не иметь простейшего представления, как работает таймер на микроконтроллере».

Впечатляют и размеры программ, получающихся после компилирования скетчей в среде Arduino IDE. Программа метеостанции с ЖК-дисплеем займет почти 20 килобайт — около 10 тыс. AVR-команд. Это непредставимо большая величина для таких устройств, и неудивительно, что при выполнении времязависимых операций они будут тормозить, — именно по этой причине при сборе данных, поступающих из последовательного порта, нам приходится с помощью задержек ожидать, пока они не соберутся в буфере. А если нам понадобится принять или передать пару десятков килобайт или мегабайт данных, что много больше объема буфера? Как угадать задержки так, чтобы гарантированно ничего не потерять?

Программа, состоящая из всего двух функций: digitalWrite (HIGH) и digitalWrite (LOW), переменно переключающих внешний вывод без искусственных задержек, при проверке на осциллографе покажет меандр с частотой 50Гц — это в контроллере, работающем на частоте 16 МГц! Простая замена этих функций на непосредственное управление портом, даже без выхода за пределы среды Arduino, ускоряет выполнение операций переключения порта примерно в 10 тыс. раз — с почти 2 миллисекунд до долей микросекунды.

Хорошей иллюстрацией к расточительности языка служит также пример пустой программы из двух строк, которую мы употребляли в качестве заглушки при программировании Xbee-модуля. Ее размер после компиляции составит целых 466 байтов — с помощью ассемблера в такой объем можно запросто втиснуть небольшую программку ориентирования по звездам для орбитального аппарата (реальный случай с одним программистом 60-х годов прошлого века из НАСА, который упаковал такую программу в остававшиеся свободными 256 байт памяти бортовой ЭВМ спутника).

Нет особых проблем применять к разработке программ для Arduino все возможности МК AVR, включая и прерывания, но при этом среда Arduino потеряет свою простоту и идеальную приспособленность к нуждам любителей. Придется ковыряться в англоязычных «даташитах», изучать регистры, прерывания и таймеры, вникать в тонкости программирования той или иной процедуры, и тогда вы быстро придете к выводу, что Arduino IDE вместе с языком Proccesing только мешают — придется переходить на обычный С или на ассемблер. К этому выводу в конце концов приходят все, кто старается двигаться дальше. Но не унывайте: Arduino дает отличный старт!

Приложения

Резисторы


Международная цветная маркировка резисторов



Таблицы номиналов резисторов и конденсаторов


Далее приведены множители для номиналов резисторов и конденсаторов (см. главу 5) с допуском 5 % (ряд Е24) и 10 % (ряд Е12, выделен жирным). Из этих значений формируются стандартные номиналы резисторов путем их умножения на степень десяти — например: 1,8 Ом, 18 Ом, 180 Ом, 1,8 кОм, 18 кОм, 180 кОм и т. д.



Резисторы с допуском 1 % (ряд Е96) имеют следующие множители для номиналов:


Стандартные обозначения...

... размеры и характеристики некоторых гальванических элементов


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки