Читаем Занимательная электроника полностью

В классе А на коллекторе транзистора устанавливается ровно половина питания. Если считать переходную характеристику каскада строго линейной (сплошная линия на рис. П3.1), то амплитуда выходного сигнала может достигать напряжения питания. Для оценки КПД в этом идеализированном случае обратим внимание, что незатемненная область на графике выходного напряжения соответствует мгновенным (в каждый момент времени) значениям напряжения на нагрузке, а затемненная — напряжениям на выходном транзисторе. Как мы видим из графика, эти области строго равны друг другу по площади, поэтому соответствующие интегралы (1) и действующие значения напряжения на нагрузке и на транзисторе будут равны, так что КПД будет равен ровно 50 % — половина затрачиваемой мощности выделяется на нагрузке, половина — на транзисторе. В реальности же переходная характеристика имеет S-образный вид (пунктир на рис. П3.1), поэтому во избежание искажений приходится ограничивать амплитуду сигнала, так что в действительности КПД может быть значительно меньше, да и реальный сигнал никогда не достигает максимальных амплитудных значений.

Другим крупнейшим недостатком класса А является то, что в отсутствие входного сигнала через транзистор течет большой ток (причем легко показать, что именно в отсутствие сигнала мощность, выделяющаяся на транзисторе, будет максимальной, и в этом случае КПД фактически равен нулю). Вместе с тем, режим класса А позволяет без лишних проблем получить неискаженный сигнал, усиленный как по току, так и по напряжению, и потому широко используется в маломощных каскадах, где КПД не имеет существенного значения. Например, в этом режиме работает «раскачивающий» каскад на транзисторе VT3 в УМЗЧ из главы 8.

Режим усилителя класса В фактически используется только в двухтактных схемах эмиттерных повторителей, подобных показанной на рис. 8.2. На рис. П3.2 изображены соответствующие графики для одной (положительной) половины такого каскада (для второй половины все — в случае идеального согласования характеристик выходных транзисторов — строго симметрично).



Рис. П3.2.Режим работы усилителя класса В


Как мы видим, выходное напряжение представляет собой половину синусоиды, и в отсутствие входного сигнала ток через транзистор(ы) равен нулю. Примем, как и ранее для класса А, что переходная характеристика строго линейна, и попробуем оценить теоретический КПД.

Действующее значение напряжения на нагрузке равно, как следует из формулы (2),

Uн= Ua/√2 (в общем случае Uа=/ Uпит), отсюда мощность в нагрузке будет равна:


где R — сопротивление нагрузки.

Мгновенное значение напряжения на транзисторе можно определить как «остаток» от того, что выделяется на нагрузке (затемненная область на рис. П3.2), т. е. uт = Uпитuн(t). (Маленькими буквами мы здесь обозначаем мгновенные значения.)

Ток через транзистор тот же самый, что и через нагрузку, и его величина будет равна iн = uн(t)/R. Тогда мгновенная мощность на транзисторе выразится формулой:


Средняя же мощность в одном плече определится следующей формулой (обратите внимание, что хотя мы считаем для одного плеча, осреднение происходит по полному значению периода 2π, просто в течение второго полупериода плечо не работает):


Для синусоидального напряжения подставим  а также выражение для (см. ранее), и получим:


Суммарная мощность, потребляемая от источника, будет равна сумме мощностей на обоих транзисторах и нагрузке, а КПД выразится формулой (величина сопротивления нагрузки R в числителе и знаменателе сокращается):


Учтем, что в данном случае Uпит = Uа, и окончательно получим, что теоретический КПД для усилителя класса В составляет π/4 = 0,785 = 78,5 %. Практически же КПД будет существенно меньше по целому ряду причин. Первая причина — мы производили расчет для максимального значения сигнала, а в реальности, как и для класса А, сигналы достигают этой величины только изредка. На рис. ПЗ.З приведены графики распределения мощностей и изменения КПД в зависимости от амплитуды сигнала.



Рис. ПЗ.З.Распределение мощностей и величина КПД в зависимости от относительной амплитуды выходного сигнала в усилителях класса В:

1 — мощность на каждом из транзисторов; 2 — мощность в нагрузке; 3 — суммарная мощность, потребляемая от источника; 4 — КПД


Интересно, что в отсутствие сигнала КПД, как и для класса А, равен нулю, но есть одно существенное различие — сама мощность, потребляемая от источника питания, при этом также равна нулю.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки