А что будет, если график немного подвигать вдоль оси абсцисс? Как видно из рис. 4.3, это равносильно признанию того факта, что в нулевой момент времени наше колебание не равно нулю. На рис. 4.3 второе колебание начинается с максимального значения амплитуды, а не с нуля. При этом сдвигаются моменты времени, соответствующие целому и половине периода, а в уравнении (1) появляется еще одна величина, обозначаемая буквой
U
= A·sin(2πft + φ). (2)Рис. 4.3.
Эта величина носит название
Интересно, что получится, если мы такие «сдвинутые» колебания суммируем? Не надо думать, что это есть лишь теоретическое упражнение — суммировать электрические колебания разного вида нам придется довольно часто. Математически это будет выглядеть, как сложение формул (1) и (2):
U
= A1·sin(2πf1t) + A2·sin(2πf2t + φ). (3)Обратите внимание, что в общем случае амплитуды и частоты колебаний различны (на рис. 4.3 они одинаковы!).
Чтобы представить себе наглядно результат, надо проделать следующее: скопировать графики на миллиметровку, разделить период колебаний на некоторое количество отрезков и для каждого отрезка сложить величины колебаний (естественно, с учетом знака), а затем построить график по полученным значениям. Еще удобнее проделать то же самое на компьютере — надо лишь написать программу, которая вычисляет значения по формуле (3) и строит соответствующие графики. Конечно, можно и не писать собственную программу, а использовать готовую, — скажем, Excel прекрасно умеет выполнять подобные операции.
Для иллюстрации продемонстрируем (рис. 4.4), что получится, если сложить два колебания, которые были представлены на рис. 4.3. Я не буду приводить картинки для иных случаев, т. к. интересных комбинаций может быть довольно много, но очень рекомендую потратить время на эти упражнения, потому что результаты могут быть весьма неожиданными и вовсе неочевидными. Скажем, при сложении двух синусоидальных колебаний с одинаковой частотой и амплитудой, но со сдвигом фаз в 180° (когда колебания находятся в противофазе), результирующая сумма будет равна нулю на всем протяжении оси времени! А если амплитуды таких колебаний не равны друг другу, то в результате получится такое же колебание, амплитуда которого в каждой точке равна разности амплитуд исходных. Запомним этот факт — он нам пригодится, когда мы будем рассматривать усилители звуковой частоты с обратной связью (см.
Рис. 4.4.
1
— исходные колебания, 2 — их суммаМожно ли проверить на практике это положение? Для этого нам придется немного забежать вперед: потребуется сетевой трансформатор с двумя вторичными обмотками. Обмотки эти нужно соединить последовательно так, чтобы конец одной обмотки соединялся с концом другой (как находить начала и концы обмоток трансформатора, будет рассказано в