Читаем Занимательная электроника полностью

Чтобы точно ответить на этот вопрос, нужно брать интегралы — средняя мощность за период есть интеграл по времени от квадрата функции напряжения. Здесь мы приведем только результат — величина средней мощности в цепи переменного тока определяется так называемым действующим значением напряжения (Ud), которое для синусоидального колебания связано с амплитудным его значением (Ua) следующей формулой: Ua = Ud·√2 (вывод этой формулы приведен в приложении 3). Точно такая же формула справедлива и для тока. Когда говорят «переменное напряжение 220 В», то всегда имеется в виду именно действующее значение. При этом амплитудное значение равно примерно 310 В, что легко подсчитать, если умножить 220 на корень из двух. Это значение нужно всегда иметь в виду при выборе компонентов для работы в сетях переменного тока — если взять диод, рассчитанный на 250 В, то он легко может выйти из строя при работе в обычной сети, в которой мгновенное значение превышает 300 В, хотя действующее значение и равно 220 В. А вот для компонентов, использующих эффект нагревания (лампочек, резисторов и т. п.), при расчете допустимой мощности нужно иметь в виду именно действующее значение.

Называть действующее значение «средним» неверно, правильно называть его среднеквадратическим (по способу вычисления — через квадрат функции от времени). Но существует и понятия среднего значения, причем не одно, а даже два. Просто среднее (строго по смыслу названия) — сумма всех мгновенных значений за период. И так как нижняя часть синусоиды (под осью абсцисс) строго симметрична относительно верхней, то можно даже не брать интегралов, чтобы сообразить, что среднее значение синусоидального напряжения, показанного на рис. 4.2, в точности равно нулю — положительная часть компенсирует отрицательную. Но такая величина малоинформативна, поэтому чаще используют средневыпрямленное (среднеамплитудное) значение, при котором знаки не учитываются (т. е. в интеграл подставляется абсолютная величина напряжения). Эта величина (Uс) связана с амплитудным значением (Ua) по формуле Uа = π·Uс/2 т. е. Ua равно примерно 1,57·Uc.

Для постоянного напряжения и тока действующее, среднее и среднеамплитудное значения совпадают и равны просто величине напряжения (тока). Однако на практике часто встречаются переменные колебания, форма которых отличается и от постоянной величины, и от строго синусоидальной. Осциллограммы некоторых из них показаны на рис. 4.5. Для таких сигналов приведенные ранее соотношения для действующего и среднего значений недействительны! Самый простой случай изображен на рис. 4.5, в — колебание представляет собой синусоиду, но сдвинутую вверх на величину амплитуды. Такой сигнал можно представить как сумму постоянного напряжения величиной А (постоянная составляющая) и переменного синусоидального (переменная составляющая). Соответственно, среднее значение его будет равно А, а действующее A + A/√2. Для прямоугольного колебания (рис. 4.5, б) с равными по длительности положительными и отрицательными полуволнами (симметричного меандра[7]) соотношения очень просты: действующее значение равно среднеамплитудному, как и для постоянного тока, а вот среднее значение равно, как и для синуса, нулю.



Рис. 4.5. Графики некоторых колебаний несинусоидальной формы


В часто встречающемся на практике случае, когда минимум прямоугольного напряжения совпадает с нулем, т. е. напряжение колеблется от нуля до напряжения питания (на рис. 4.5 не показано), такой меандр можно рассматривать аналогично случаю рис. 4.5, в, как сумму постоянного напряжения и прямоугольного. Для самого верхнего случая (рис. 4.5, а), который представляет собой синусоидальное напряжение, пропущенное через двухполупериодный выпрямитель (см. главу 9), действующее и среднеамплитудное значения будут равны соответствующим значениям для синусоиды, а вот среднее будет равно не нулю, а совпадать со среднеамплитудным. Для самого нижнего случая (рис. 4.5, г) указать все эти величины вообще непросто, т. к. они зависят от формы сигнала.

Но, даже выучив все это, вы все равно не сможете измерять величины напряжений и токов несинусоидальной формы с помощью мультиметра! Не забывайте об этом, как и о том, что для каждого мультиметра есть предельные значения частоты колебаний — если вы включите мультиметр в цепь с иными параметрами, он может показать все, что угодно — «погоду на Марсе», по распространенному выражению.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки