Но возвратимся к нашей задаче. Если после истечения из самовара 20 стаканов уровень воды в нем (считая от отверстия крана) понизился в четыре раза, то 21-й стакан наполнится вдвое медленнее, чем 1-й. И если в дальнейшем уровень воды понизится в 9 раз, то для наполнения последних стаканов понадобится уже втрое больше времени, чем для наполнения первого. Все знают, как вяло вытекает вода из крана самовара, который уже почти опорожнен. Решая эту задачу приемами высшей математики, можно доказать, что время, нужное на полное опорожнение сосуда, с два раза больше срока, в течение которого вылился бы такой же объем жидкости при неизменном первоначальном уровне.
Рисунок 56. Что скорее выльется: ртуть или спирт? Уровень жидкости в сосудах одинаков.
От сказанного один шаг к пресловутым задачам о бассейне, без которых не обходится ни один арифметический и алгебраический задачник. Всем памятны классически-скучные, схоластические задачи вроде следующей:
«В бассейн проведены две трубы. Через одну первую пустой бассейн может наполниться в 5 часов; через одну вторую полный бассейн может опорожниться в 10 часов. Во сколько часов наполнится пустой бассейн, если открыть обе трубы сразу?»
Задачи этого рода имеют почтенную давность – без малого 20 веков, восходя к Герону Александрийскому. Вот одна из героновых задач, – не столь, правда, замысловатая, как ее потомки:
Две тысячи лет решаются задачи о бассейнах и – такова сила рутины! – две тысячи лет решаются неправильно. Почему неправильно – вы поймете сами после того, что сейчас сказано было о вытекании воды. Как учат решать задачи о бассейнах? Первую, например, задачу решают так. В 1 час первая труба наливает 0,2 бассейна, вторая выливает 0,1 бассейна; значит, при действии обоих труб в бассейн ежечасно поступает 0,2 – 0,1 = 0,1 откуда для времени наполнения бассейна получается 10 часов. Это рассуждение неверно: если втекание воды можно считать происходящим под постоянным давлением и, следовательно, равномерным, то ее вытекание происходит при изменяющемся уровне и, значит, неравномерно. Из того, что второй трубой бассейн опоражнивается в 10 часов, вовсе не следует, что ежечасно вытекает 0,1 доля бассейна; школьный прием решения, как видим, ошибочен. Решить задачу правильно средствами элементарной математики нельзя, а потому задачам о бассейне (с вытекающей водой) вовсе не место в арифметических задачниках[38]
.Рисунок 57. Задача о бассейне.
Возможно ли устроить такой сосуд, из которого вода вытекала бы все время равномерной струёй, не замедляя своего течения, несмотря на то, что уровень жидкости понижается? После того, что вы узнали из предыдущих статей, вы, вероятно, готовы счесть подобную задачу неразрешимой.
Между тем это вполне осуществимо. Банка, изображенная на рис. 58, – именно такой удивительный сосуд. Это обыкновенная банка с узким горлом, через пробку которой вдвинута стеклянная трубка. Если вы откроете кран С ниже конца трубки, то жидкость будет литься из него неослабевающей струёй до тех пор, пока уровень воды не опустится в сосуде до нижнего конца трубки. Вдвинув трубку почти до уровня крана, вы можете заставить всю жидкость, находящуюся выше уровня отверстия, вытечь равномерной, хотя и очень слабой струёй.
Рисунок 58. Устройство сосуда Мариотта. Из отверстия С вода течет равномерно.
Отчего это происходит? Проследите мысленно за тем, что совершается в сосуде при открытии крана С (рис. 58). Прежде всего выливается вода из стеклянной трубки; уровень жидкости внутри нее опускается до конца трубки. При дальнейшем вытекании опускается уже уровень воды в сосуде и через стеклянную трубку входит наружный воздух; он просачивается пузырьками через воду и собирается над ней в верхней части сосуда. Теперь на всем уровне В давление равно атмосферному. Значит, вода из крана С вытекает лишь под давлением слоя воды ВС, потому что давление атмосферы изнутри и снаружи сосуда уравновешивается. А так как толщина слоя ВС остается постоянной, то и неудивительно, что струя все время течет с одинаковой скоростью.
Попробуйте же теперь ответить на вопрос: как быстро будет вытекать вода, если вынуть пробочку В на уровне конца трубки?