Рисунок 62. Фонтан, действующий давлением pтyти. Струя бьет раз в десять выше разности уровней ртути.
В старину – в XVII и XVIII веках – вельможи забавлялись следующей поучительной игрушкой: изготовляли кружку (или кувшин), в верхней части которой имелись крупные узорчатые вырезы (рис. 63). Такую кружку, налитую вином, предлагали незнатному гостю, над которым можно было безнаказанно посмеяться. Как пить из нее? Наклонить – нельзя: вино польется из множества сквозных отверстий, а до рта не достигнет ни капли. Случится, как в сказке:
Рисунок 63. Обманчивый кувшин конца XVIII века и секрет его устройства.
Мед, пиво пил,
Да усы лишь обмочил.
Но кто знал секрет устройства подобных кружек, – секрет, который показан на рис. 63 справа, – тот затыкал пальцем отверстие В, брал в рот носик и втягивал в себя жидкость, не наклоняя сосуда: вино поднималось через отверстие Е по каналу внутри ручки, далее по его продолжению С внутри верхнего края кружки и достигало носика.
Не так давно еще подобные кружки изготовлялись нашими гончарами. Мне случилось в одном доме видеть образчик их работы, довольно искусно скрывающей секрет устройства сосуда; на кружке была надпись: «Пей, но не облейся».
– Ничего, конечно, не весит: в таком стакане вода не держится, выливается, – скажете вы.
– А если не выливается? – спрошу я. – Что тогда?
В самом деле, возможно ведь удержать воду в опрокинутом стакане так, чтобы она не выливалась. Этот случай изображен на рис. 64. Опрокинутый стеклянный бокал, подвязанный за донышко к одной чашке весов, наполнен водой, которая не выливается, так как края бокала погружены в сосуд с водой. На другую чашку весов положен точно такой же пустой бокал.
Какая чашка весов перетянет?
Рисунок 64. Какая чашка перетянет?
Перетянет та, к которой привязан опрокинутый бокал с водой. Этот бокал испытывает сверху полное атмосферное давление, снизу же – атмосферное давление, ослабленное весом содержащейся в бокале воды. Для равновесия чашек необходимо было бы наполнить водою бокал, помещенный на другую чашку.
При указанных условиях, следовательно, вода в опрокинутом стакане весит столько же, сколько и в поставленном на дно.
Осенью 1912 г. с океанским пароходом «Олимпик» – тогда одним из величайших в мире судов – произошел следующий случай. «Олимпик» плыл в открытом море, а почти параллельно ему, на расстоянии сотни метров, проходил с большой скоростью другой корабль, гораздо меньший, броненосный крейсер «Гаук». Когда оба судна заняли положение, изображенное на рис. 65, произошло нечто неожиданное: меньшее судно стремительно свернуло с пути, словно повинуясь какой-то невидимой силе, повернулось носом к большому пароходу и, не слушаясь руля, двинулось почти прямо на него. Произошло столкновение. «Гаук» врезался носом в бок «Олпмпика»; удар был так силен, что «Гаук» проделал в борту «Олимпика» большую пробоину.
Рисунок 65. Положение пароходов «Олимпик» и «Гаук» перед столкновением.
Когда этот странный случай рассматривался в морском суде, виновной стороной был признан капитан гиганта «Олимпик», так как, – гласило постановление суда, – он не отдал никаких распоряжений уступить дорогу идущему наперерез «Гауку».
Суд не усмотрел здесь, следовательно, ничего необычайного: простая нераспорядительность капитана, не больше. А между тем, имело место совершенно непредвиденное обстоятельство: случай взаимного притяжения судов на море.
Такие случаи не раз происходили, вероятно, и раньше при параллельном движении двух кораблей. Но пока не строили очень крупных судов, явление это не проявлялось с такой силой. Когда воды океанов стали бороздить «плавучие города», явление притяжения судов сделалось гораздо заметнее; с ним считаются командиры военных судов при маневрировании.
Многочисленные аварии мелких судов, проплывавших в соседстве с большими пассажирскими и военными судами, происходили, вероятно, по той же причине.
Чем же объясняется это притяжение? Конечно, здесь не может быть и речи о притяжении по закону всемирного тяготения Ньютона; мы уже видели (в гл. IV), что ото притяжение слишком ничтожно. Причина явления совершенно иного рода и объясняется законами течения жидкостей в трубках и каналах. Можно доказать, что если жидкость протекает по каналу, имеющему сужения и расширения, то в узких частях канала она течет быстрее и давит на стенки канала слабее, нежели в широких местах, где она протекает спокойнее и давит на стенки сильнее (так называемый «принцип Бернулли»).