В некоторых случаях состояние равновесия устанавливается настолько медленно в новых условиях, что за изменением концентрации можно проследить с помощью обычной лабораторной техники и наблюдать тем самым явление релаксации.
В качестве примера рассмотрим переход диоксида азота (темно-бурый газ) в димер (бесцветный газ):
Наполните стеклянный газовый шприц примерно 80 см3
газа. Быстро нажмите поршень шприца и сожмите газ до 50–60 см3. Убедитесь, что окраска газа изменилась. Сначала произойдет быстрое потемнение газа, так как концентрация NО2 возрастет, но затем наступит медленное посветление, поскольку высокое давление способствует образованию N2О4, и равновесие будет достигнуто при новых внешних условиях».В ряде учебников аналогичное описание приводится, чтобы проиллюстрировать принцип Ле Шателье: при повышении давления газа равновесие смещается в сторону уменьшения числа молекул, в данном случае – в сторону бесцветного димера N2
О4. При этом текст сопровождается тремя цветными фотографиями. На них видно, как сразу после сжатия желтовато-бурая вначале смесь становится темно-бурой, а на третьей фотографии, сделанной через несколько минут, газовая смесь в шприце заметно светлеет.Иногда добавляют, что поршень нужно нажимать как можно быстрее, чтобы равновесие за это время не успело сдвинуться.
На первый взгляд такое объяснение выглядит очень убедительно. Однако количественное рассмотрение процессов в шприце полностью опровергает все выводы. Дело в том, что указанное равновесие между диоксидом азота NО2
и его димером (тетраоксидом азота) N2О4 устанавливается чрезвычайно быстро: за миллионные доли секунды! Поэтому невозможно сжать газ в шприце быстрее, чем это равновесие установится. Даже если двигать поршень в стальном «шприце» с помощью взрыва, равновесие, скорее всего, успевало бы установиться по мере движения поршня из-за его инерционности. Как же еще можно объяснить наблюдаемое в этом эксперименте явление? Конечно, уменьшение объема и соответствующее повышение концентрации газов приводит к усилению окраски. Но не это главная причина. Каждый, кто накачивал ручным насосом велосипедную камеру, знает, что насос (особенно алюминиевый) сильно нагревается. Трение поршня о трубку насоса здесь ни при чем – в этом легко убедиться, сделав несколько холостых качаний, когда воздух в насосе не сжимается. Нагрев происходит в результате так называемого адиабатического сжатия – когда теплота не успевает рассеяться в окружающем пространстве. Значит, и при сжимании смеси оксидов азота она должна нагреваться. А при нагревании равновесие в этой смеси сильно сдвигается в строну диоксида.Насколько нагреется смесь при сжатии? В случае сжатия воздуха в насосе нагрев легко рассчитать, воспользовавшись уравнением адиабаты для идеального газа:
Непосредственно применить уравнение идеальных газов для расчета состояния смеси оксидов азота сразу после сжатия нельзя, так как в этом процессе изменяются не только объем, давление и температура, но и число молей (соотношение NO2
N2O4) в ходе химической реакции. Задачу можно решить только путем численного интегрирования дифференциального уравнения, которое учитывает, что работа, производимая в каждый момент движущимся поршнем, затрачивается, с одной стороны, на нагрев смеси, с другой – на диссоциацию димера. При этом предполагается, что известны энергия диссоциации N2О4, теплоемкости обоих газов, величина γ для них и зависимость положения равновесия от температуры (все это табличные данные). Расчет показывает, что если исходную смесь газов при атмосферном давлении и комнатной температуре быстро сжать до половины объема, то смесь нагреется всего на 13 °С. Если сжать смесь до уменьшения объема втрое, температура повысится уже на 21 °С. А даже небольшое нагревание смеси сильно сдвигает положение равновесия в сторону диссоциации N2О4.