Читаем Занимательная математика полностью

— Мне кажется, что вероятность совпадения дней рождения у двух из тридцати случайным образом собравшихся людей должна быть что- нибудь около 0,05, но я готов держать пари из расчета 5 к 1.

— Охотно принимаю пари, — согласился Сэм-младший, — а заодно предлагаю тебе заключить пари с кем-нибудь из членов клуба. Даже если кто-нибудь из них предложит тебе пари из расчета 1 к 1, то рекомендую тебе принять такое пари.

— А вот этого я решительно не понимаю! — воскликнул Сэм- старший.

— Между тем перед тобой один из примеров того, что мы называем «мультипликативной природой независимых вероятностей». Ты опрашиваешь членов клуба об их днях рождения до тех пор, пока чей- нибудь день рождения не повторится, и в худшем случае тебе придется опросить всех тридцать членов клуба. Так как опрос продолжается только в том случае, если день рождения очередного члена клуба не совпадает с днем рождения ни одного из ранее опрошенных членов клуба, вероятности, которые требуется перемножить, — это вероятности несовпадения дня рождения каждого из вновь опрошенных. А вероятность совпадения дней рождения, разумеется, равна единице минус полученная вероятность несовпадения дней рождения.

Иначе говоря, день рождения второго из опрошенных тобой членов клуба с вероятностью 364/365 не совпадает с днем рождения первого из опрошенных. Что же касается третьего из опрошенных, то его день рождения может совпадать с днями рождения любого из первых двух опрошенных, поэтому вероятность того, что его день рождения не совпадает с их днями рождения, составляет 363/365.

Это означает, что после того, как ты опросил трех членов круга об их днях рождения, вероятность совпадения дней рождения у двух из трех опрошенных стала равна 1 — 364/365 * 363/365

А когда ты опросишь всех 30 членов клуба, вероятность совпадения дней рождения у двух из них окажется равной

Оценить это число можно различными способами, но ответ, разумеется, будет одинаков. Он означает, что вероятность совпадения двух дней рождения составляет примерно 0.7. т. е. ты можешь заключить пари на то, что у кого-то из 30 членов клуба дни рождения совпадают с шансами на выигрыш, более высокими, чем 2 к 1.

— Поразительно! — не мог не признать Сэм-старший. — А сколько людей следовало бы опросить, чтобы я мог, заключить пари 1 к 1 на то, что у двух из них дни рождения совпадают?

— Примерно 24 человека. Интересно, что после 24 шансы на выигрыш такого пари быстро возрастают.

Теннисный турнир

— Думаю, что пока задач на вероятности хватит, — сказал Сэм- старший. — Мне и с тем, что ты мне сообщил, придется разбираться несколько недель. Насколько я знаю, ты собираешься этим летом хорошенько подзаняться теннисом и забудешь про всякую математику.

— Я действительно хочу поиграть в теннис, — подтвердил Сэм- младший, — но, как ни странно, именно в связи с теннисом я столкнулся с одной задачей, которую никак не могу решить, несмотря на всю мою математическую подготовку.

— А какое отношение имеет математика к теннису? — удивился Сэм-старший. — Поясни!

Перейти на страницу:

Похожие книги

Деньги
Деньги

Ты уплатил в магазине деньги и получил эту книгу. Но подумай, что произошло: в обмен на несколько маленьких металлических кружков или раскрашенный листок бумаги тебе дали совсем не похожий на них предмет. Что за сила заключена в деньгах? Откуда у них такое необыкновенное свойство? Сама книга расскажет тебе об этом. Она написана для тех, кому пришли на ум такие вопросы.Для тех, кто не знает, когда и почему появились деньги; для тех, кто хочет понять, какое значение имеют деньги в жизни людей; для тех, кто знает, и для тех, кто не знает, отчего существует в мире жадность к деньгам и преклонение перед ними; для тех, кто любит разгадывать тайны древних монет, читать по ним о далеких временах и давно живших людях; для тех, кому интересно узнать, как делают деньги; для тех, кого занимает вопрос, всегда ли были деньги и всегда ли они будут.

Александр Браун , Георгий Васильевич Елизаветин , Даниил Михайлович Тетерин , Карел Чапек , Сергей Новиков , Эдвард Джордж Бульвер-Литтон

Карьера, кадры / Экономика / Детективы / Детская образовательная литература / Исторические приключения / Книги Для Детей