Читаем Занимательная микроэлектроника полностью

Рис. 3.5.Схема включения биполярного транзистора по схеме с общим эмиттером в усилительном режиме

Переменный резистор должен иметь достаточно большое сопротивление, чтобы при выведенном в крайнее правое положение движке ток базы заведомо удовлетворял соотношению Iбh21э << Iк (ток коллектора в данном случае определяется нагрузкой). Если для транзистора (по справочнику) h21э составляет величину в среднем 50, а в коллекторе нагрузка 100 Ом, то переменный резистор разумно выбрать номиналом примерно 20–30 кОм и более. Выведя движок в крайнее правое по схеме положение, мы задаем минимально возможный ток базы. В этом положении следует включить питание и убедиться с помощью осциллографа или мультиметра, что транзистор близок к отсечке — Напряжение на коллекторе Uк будет почти равно напряжению питания (но не совсем — мы уже говорили, что для полной отсечки нужно соединить выводы базы и эмиттера между собой). Осторожно перемещая движок переменника, мы увидим, как напряжение на коллекторе будет падать (а на нагрузке, соответственно, расти). Когда напряжение на коллекторе станет почти равным нулю (т. е. транзистор перейдет в состояние насыщения), эксперимент следует прекратить, иначе можно выжечь диод «база-эмиттер» слишком большим прямым током (для предотвращения этой ситуации нужно последовательно с переменным поставить постоянный резистор небольшого номинала— на рис. 3.5 показан пунктиром).

Вернем движок переменника в состояние, когда напряжение на коллекторе примерно равно половине напряжения питания. Это так называемая рабочая точка транзистора в схеме с общим эмиттером. Если напряжение на базовом резисторе будет в определенных пределах колебаться, изменяя ток базы, то переменная составляющая напряжения на коллекторе будет повторять его форму (с точностью до наоборот, т. е. инвертируя сигнал, как мы говорили ранее), но усиленную по напряжению и току. Это и есть усилительный режим транзистора. В какой степени входной сигнал может быть усилен? Все определяется знакомым нам коэффициентом h21э. Его величину для данного экземпляра транзистора можно определить так: пусть при напряжении на коллекторе, равном половине напряжения источника питания (т. е. 5 В как на рис. 3.5), сопротивление базового резистора составляет 10 кОм. Ток коллектора (при коллекторной нагрузке 100 Ом) составит 50 мА. Ток базы составит (10 — 0,6) В/10 кОм, т. е. примерно 1 мА. Тогда их отношение и будет равно h21э в данном случае 50.

А каков коэффициент усиления такой схемы по напряжению? Это зависит от соотношения резисторов в базе и в коллекторе. Например, если величина базового резистора составляет 1 кОм, то изменение тока базы при изменении входного напряжения на 1 В составит 1 мА. А в пересчете через h21э это должно привести к изменению тока коллектора на 50 мА, что на нагрузке 100 Ом составит 5 В. Следовательно, усиление по напряжению при таком соотношении резисторов будет равно 5. Чем выше номинал резистора в базе (и ниже — нагрузки), тем меньше коэффициент усиления по напряжению. В пределе, если положить базовый резистор равным нулю, а коллекторный — бесконечности, то максимальный коэффициент усиления современных транзисторов по напряжению может составить величину порядка нескольких сотен (но не бесконечность — за счет того, что база имеет собственное входное сопротивление, а коллектор — собственное выходное). Обратите внимание на это обстоятельство: при повышении величины сопротивления в коллекторе коэффициент усиления увеличивается. В частности, это означает, что лучше вместо резистора включать источник тока, у которого выходное сопротивление очень велико. Именно так и поступают в аналоговых микросхемах, где создать источник тока в виде еще одного-двух транзисторов вместо нагрузочного резистора даже проще (см. главу 6).

В приведенном виде (см. рис. 3.5) схема по усилению исключительно плоха. В самом деле, все зависит от величины коэффициента h21э, а он, во-первых, «гуляет» от транзистора к транзистору, во-вторых, очень сильно зависит от температуры (при повышении температуры повышается). Чтобы понять, как правильно построить усилительный транзисторный каскад со стабильными параметрами, нужно ознакомиться еще с одной схемой включения транзистора — схемой с общим коллектором.

Схема с общим коллектором

Схема с общим коллектором (ОК) показана на рис. 3.6. Учитывая, что напряжение базы и эмиттера никогда не отличается более чем на 0,6 В, мы придем к выводу, что выходное напряжение такой схемы должно быть меньше входного именно на эту величину. Так и есть, схема с общим коллектором иначе называется эмиттерным повторителем, поскольку выходное напряжение повторяет входное (за вычетом все тех же 0,6 В). Каков же смысл этой схемы?

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника