Читаем Занимательная микроэлектроника полностью

Рис. 3.6.Схема включения биполярного транзистора по схеме с общим коллектором

Схема на рис. 3.6 усиливает сигнал по току (в число раз, определяемое величиной h21э), что равносильно увеличению собственного входного сопротивления схемы ровно в h21э по отношению к тому сопротивлению, которое находится в цепи эмиттера. Поэтому в этой схеме мы можем подавать на «голый» вывод базы напряжение без опасности сжечь переход «база-эмиттер». Иногда это полезно само по себе, если не слишком мощный источник (т. е. обладающий высоким выходным сопротивлением), нужно согласовать с мощной нагрузкой (В главе 4 мы увидим, как это используется в источниках питания). Кстати, схема ОК не инвертирует сигнал, в отличие от схемы ОЭ.

Но главной особенностью схемы с общим коллектором является то, что ее характеристики исключительно стабильны и не зависят от конкретного транзистора, до тех пор, пока вы, разумеется, не выйдете за пределы возможного. Так, сопротивление нагрузки в эмиттере и входное напряжение схемы практически однозначно задают ток коллектора, — характеристики транзистора В этом деле никак не участвуют. Для объяснения данного факта заметим, что токи коллектора и эмиттера, т. е. ток через нагрузку, связаны между собой Соотношением Iн = Iк + Iб, но ток базы мал по сравнению с током коллектора, Потому мы им пренебрегаем и с достаточной степенью точности полагаем, что Iн = Iк. Но напряжение на нагрузке будет всегда равно входному напряжению минус Uбэ, которое, как мы уже выучили, всегда 0,6 В. Таким образом, ток в нагрузке есть (Uвх Uбэ)/Rн, и тогда окончательно получаем, что

Iк = (Uвх Uбэ)/Rн

Разумеется, мы по ходу дела приняли два допущения (что Iб << Iк и что Uбэ есть точно 0,6 В — и то, и другое не всегда именно так), но мы же давно договорились, что не будем высчитывать характеристики схем с точностью до процентов! Ограничение, которое накладывается транзистором, будет проявляться тут только, если мы попробуем делать Rн все меньше и меньше, в конце концов либо ток коллектора, либо мощность, выделяемая на коллекторе (она равна (UпитUвых)∙Iк), превысят предельно допустимые значения и тогда сгорит коллекторный переход или (если Iк чем-то лимитирован) то же произойдет с переходом «база-эмиттер». Зато в допустимых пределах мы можем со схемой эмиттерного повторителя творить что угодно, и соотношение Iк = (UвхUбэ)/Rн всегда будет выполняться.

Про такую схему говорят, что она охвачена стопроцентной отрицательной обратной связью по напряжению. Об обратной связи мы подробнее поговорим в главе 6, посвященной операционным усилителям, а сейчас нам важно, что такая обратная связь ведет к стабилизации параметров схемы и независимости их как от конкретного экземпляра транзистора, так и от температуры. Но ведь это именно то, чего нам так не хватало в классической схеме с общим эмиттером! Нельзя ли их как-то скомбинировать?

Стандартный усилительный каскад на транзисторе

Действительно, «правильный» усилительный каскад на транзисторе есть комбинация той и другой схемы, этот вариант показан на рис. 3.7.

Рис. 3.7. Стандартный усилительный каскад на биполярном транзисторе

Для конкретности предположим, что Uпит = 10 В, Uвх = 5 В. Как правильно рассчитать сопротивления R3 и RK? Заметим, что схема обладает двумя выходами, из которых нас больше интересует выход 1 (выход усилителя напряжения, соответствующий выходу в схеме с общим эмиттером по рис. 3.5).

При нормальной работе каскада (для обеспечения максимально возможного размаха напряжения на выходе) разумно принять, чтобы в состоянии покоя, т. е. когда Uвх = 5 В, на выходе (на коллекторе транзистора) была половина напряжения питания (в нашем случае тоже примерно 5 В). Это напряжение зависит от коллекторного тока и от сопротивления нагрузки по этому выходу, которое равно в данном случае Rк. Как правило, сопротивление нагрузки Rк нам задано, примем для определенности, что Rк = 5,1 кОм. Это означает, что в «хорошем» режиме, чтобы обеспечить Uвых1 = 5 В, ток коллектора должен составлять 1 мА — посчитайте по закону Ома!

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника