Итак, запись числа в двоичной системе требует всего две цифры, начертание которых заимствовано из десятичной системы, и выглядит, как 0 и 1. Число, например, 1101 тогда будет выглядеть так:
1∙23
+ 1∙22 + 0∙21 + 1∙20 = 13.Чтобы отличить запись числа в различных системах, часто внизу пишут основание системы:
11012
= 1310.Если система не указана, то имеется в виду обычно десятичная, но не всегда. Часто, когда из контекста понятно, что идет речь об электронных устройствах, не указывают не только основание «два», но и под словом «разрядность» имеют в виду количество именно двоичных, а не десятичных разрядов (таков, скажем, смысл термина «24-разрядный цвет»).
Шестнадцатеричная система
Шестнадцатеричная система имеет, как ясно из ее названия, основание шестнадцать. Для того чтобы получить шестнадцать различных значков, изобретать ничего нового не стали, а просто использовали те же цифры от 0 до 9 для первых десяти знаков, и заглавные латинские буквы от А до F — для знаков с одиннадцатого по шестнадцатый. Таким образом, известное нам число 1310
выразится в шестнадцатеричной системе, как просто D16. Соответствие шестнадцатеричных знаков десятичным числам следует выучить наизусть: А — 10, В — 11, С — 12, D — 13, Е — 14, F — 15. Значения больших чисел вычисляются по обычной формуле, например:A2FC16
= 10∙163 + 2∙162 + 15∙161 + 12∙160 = 40960+ 512 + 240 + 12 = 4172410.Перевод из одной системы счисления в другую
Как следует из ранее изложенного, перевод в десятичную систему любых форматов не представляет сложности и при надлежащей тренировке может осуществляться даже в уме. Для того чтобы быстро переводить в десятичную систему двоичные числа (и, как мы увидим, и шестнадцатеричные тоже), рекомендую выучить наизусть таблицу степеней двойки до 16:
На первое время достаточно запомнить верхний ряд, остальное выучится позже само.
Сложнее переводить из десятичной системы в двоичную, в учебниках описывается устрашающая процедура, основанная на делении столбиком. Я сейчас попробую вам показать способ, который позволяет переводить числа в двоичную систему несколько более простым методом, причем небольшие числа можно преобразовать даже в уме. Это, в сущности, то же самое деление, но без излишних сложностей и формальностей. Запомните сначала следующее правило: число, равное какой-либо степени двойки, имеет 1 в разряде с номером, на единицу большим степени, остальные все нули:
21
= 210 =102;22
= 410 = 1002;23
= 810 = 10002 и т. д.Способ состоит в следующем: пусть мы имеем, например, десятичное число 59. Подбираем наибольшую степень двойки из таблицы ранее, не превышающую этого числа: 32, что есть 5-я степень. Ставим 1 в шестом разряде: 100000. Вычитаем подобранную степень из исходного числа (59–32 = 27) и подбираем для остатка также степень, его не превышающую: 16 (24
). Ставим единицу в 5-м разряде: 110000. Повторяем процедуру вычитания-подбора: 27–16 = 11, степень равна 8 (23), ставим единицу в 4-м разряде: 111000. Еще раз: 11 — 8 = 3, степень равна 2 (21), ставим единицу во 2-м разряде: 111010. Последнее вычитание дает 1, которую и ставим в младший разряд, окончательно получив 5910 = 1110112. Если бы исходное число было четным, к примеру 58, то в последнем вычитании мы бы получили 0, и число в двоичной системе также оканчивалось бы на ноль: 5810 = 1110102.Кстати, полезно также обратить внимание, что числа, на единицу меньшие степени двойки, имеют количество разрядов, равное степени, и все эти разряды содержат единицы:
21
— 1 = 110 = 12;22
— 1 = 310 = 112;23
— 1 = 710 = 1112;Подобно тому, как наибольшее трехразрядное число в десятичной системе равно 999, и чисел таких всего 103
= 1000 (от 000 до 999), в двоичной системе тех же трехразрядных чисел будет 23 = 8 штук, в диапазоне от 000 до 111, т. е. от 0 до 7. Таким образом, наибольшее двоичное число с данным количеством разрядов будет всегда содержать все единицы во всех разрядах.А вот из двоичной системы в шестнадцатеричную и обратно перевод очень прост: 16 есть 24
и без всяких вычислений можно утверждать, что одноразрядное шестнадцатеричное число будет иметь ровно 4 двоичных разряда. Поэтому перевод из двоичной системы в шестнадцатеричную осуществляется так: двоичное число разбивается на т. н. тетрады, т. е. группы по четыре разряда, а затем каждая тетрада переводится отдельно и результаты выписываются в том же порядке. Так как в тетраде всего 16 вариантов, то их опять же легко выучить наизусть:Например, число 5910
, т. е. 0011 10112, будет равно 3Bh.