Читаем Занимательная теория вероятности полностью

В начале XIX века к «чистым» азартным играм, не требующим от игрока даже ничтожных умственных усилий, прибавилась рулетка. На первых порах она не получила распространения, но уже к 1863 году в столице карликового государства Монако — Монте-Карло создается грандиозное рулеточное предприятие. Игорный дом в Монте-Карло быстро стал знаменит. Во многих романах и повестях Монте-Карло выбиралось местом действия, а героем — безумец, собирающийся обогатиться за счет его величества случая или, того хуже, за счет изобретения беспроигрышной системы.

Произведения эти вполне реалистичны. Если их дополнить еще полицейскими протоколами о неудачниках, покончивших с собой из-за крушения надежд стать Крезом за счет княжества Монакского, то получится увесистый отчет о пагубном очаровании, которое таит в себе игорный дом.

Наверное, можно было бы не описывать рулеточное колесо и разграфленное поле, на клетки которого бросают денежные жетоны. И все же несколько слов для читателей, незнакомых с художественной литературой о Монте-Карло, сказать стоит. Рулетка — это большая тарелка, дно которой может вращаться относительно неподвижных бортов. Дно-колесо разбито на 37 ячеек, пронумерованных от 0 до 36 и покрашенных в два цвета: черный и красный. Колесо закручивается, и на него бросается шарик. Он танцует, беспорядочно перепрыгивая из ячейки в ячейку. Темп колеса замедляется, шарик делает последние нерешительные прыжки и останавливается. Выиграло, скажем, число 14 — красный цвет.

Игроки могут ставить на красное или черное; на чет или нечет; первую, вторую или третью дюжину и, наконец, на номер.

За угадывание цвета или четности вы получаете денег вдвое больше, чем внесли на игру, за выигрыш дюжины — втрое, за выигрыш номера — в тридцать шесть раз. Эти числа строго соответствовали бы вероятностям появления, если бы не одно маленькое «но» — это ноль (зеро). Зеро — выигрыш банкомета. При нем проигрывают и поставившие на черное, и те, кто надеялся на красный цвет.

Ставя на красное, искатель счастья действует с шансом на выигрыш, равным 18/37: чуть-чуть меньше половины. Но за счет этого «чуть-чуть» существует государство Монако и получают хорошие дивиденды пайщики Монте-Карло. Из-за зеро игра в рулетку уже не равноценна для игрока и банкомета. Поставив 37 раз по франку, я в среднем выиграю 18 раз, а проиграю 19.

Если я 37 раз ставлю по франку на 14-й (или какой-либо другой) номер, то в среднем я выиграю один раз из тридцати семи, и за этот выигрыш мне уплатят лишь 36 франков. Так что, как ни крути, при длительной игре проигрыш обеспечен.

Значит, нельзя выиграть в рулетку? Да нет. Конечно, можно. И мы легко подсчитаем вероятность выигрыша. Для простоты положим, что игрок пробует свое счастье каждый день. Ровно в 18.00 он появляется в казино и ставит пять раз по франку на красное.

За год игры герой встретится со всеми возможными вариантами красного и черного (точнее, не красного, так как и зеро мы отнесем к черному). Вот эти варианты:


ккккк чкккк кчккк ккчкк кккчк ккккч

ччччч кчччч чкччч ччкчч чччкч ччччк

ччккк кччкк ккччк кккчч чкчкк кчкчк

ккчкч чккчк кчккч чкккч ккччч чккчч

ччккч чччкк кчкчч чкчкч ччкчк кччкч

чкччк кчччк


Как видно, их всего 32 варианта. Один из них содержит пять к, пять — состоят из четырех к, десять — из трех к. Разумеется, те же числа будут и при подсчете черных случаев (ч).

Из составленной таблички мы сейчас увидим все «секреты» рулетной игры. Будем считать, что в году 320 дней рабочих и полтора месяца выходных: работа ведь нелегкая — сплошная трепка нервов. Количество дней с разными выигрышами и проигрышами получается от умножения на 10 числа различных комбинаций, приведенных в таблице. Таким образом, счастливых дней в «среднем» году будет десять. Но зато столько же будет «черных» дней сплошного проигрыша. На число «хороших» дней, когда фортуна откажет лишь один раз, придется столько же дней неудачных, когда лишь один раз появится красный цвет, — их будет пятьдесят. Чаще всего — по сто дней — мы встретимся со случаями, когда выигрышей выпадет три, а проигрышей — два, или наоборот, когда проигрышей три, а выигрышей — два.

Пока результат нашего сражения с рулеткой нулевой. Так что занятие можно было бы считать безобидным, если бы не упомянутое зеро. Мы говорили, что вероятность красного цвета не 1/2, а 18/37. Поэтому проигрыши и выигрыши в среднем не уравновесятся, и год закончится с убытком для клиентов, поскольку число грустных дней для них будет несколько превышать число радостных. Например, вероятность полностью «красного» дня равна 18/37 в пятой степени, а сплошь «черного» — 19/37 в пятой степени. Если вы не поленитесь заняться арифметикой, то найдете, что эти вероятности равны соответственно 0,027 и 0,036. Это значит, что один «красный» день в среднем приходится уже не на 32 дня, а на 36, а один «черный» будет встречаться через 28 дней.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература