Читаем Занимательная теория вероятности полностью

Скажем, некто Пьер отправился на мотоцикле на работу на улицу Гренель и по дороге наскочил на грузовик. Можно ли ответить, какова вероятность этого грустного происшествия? Без сомнения, можно, но необходимо оговорить исходную ситуацию. А выбор ее, конечно, неоднозначен. Ведь можно привлечь к статистике лишь выезды на работу молодых парижан; а можно исследовать группу выездов всех парижан в любое время; можно расширить статистику на другие города, а не ограничиться Парижем. Во всех этих вариантах вероятности будут разными.

Итак, вывод один: когда начинаешь оперировать числами, необходима точность в постановке задачи; исследователь всегда должен формализовать явление — с этим уж ничего не поделаешь.

Вернемся теперь к игре в кости. Одной костью никто не играет: слишком просто и загодя известно, что вероятность выпадения любой грани — 1/6, и никаких математических задач в такой игре не возникает.

При бросании трех или даже двух костей сразу появляются проблемы, и можно уже задать, скажем, такой вопрос: какова вероятность появления двух шестерок? Каждая из них появляется независимо с вероятностью, равной 1/6. При выпадении шестерки на одной кости вторая может лечь шестью способами. Значит, вероятность выпадения двух шестерок одновременно будет равна произведению двух вероятностей (1/6 · 1/6). Это пример так называемой теории умножения вероятностей. Но на этом новые проблемы не кончаются.

В начале XVII века к великому Галилею явился приятель, который захотел получить разъяснение по следующему поводу. Играя в три кости, он заметил, что число 10, как сумма очков на трех костях, появляется чаще, чем число 9. «Как же так, — спрашивал игрок, — ведь как в случае девятки, так и в случае десятки эти числа набираются одинаковым числом способов, а именно шестью?» Приятель был совершенно прав. Посмотрите на рисунок, на котором показано, как можно представить девятку и десятку в виде сумм.

Разбираясь в этом противоречии, Галилей решил одну из первых задач так называемой комбинаторики — основного инструмента расчетов вероятностей.

Итак, в чем же дело? А вот в чем.

Важно не то, как сумма разлагается на слагаемые, а сколько вариантов выпадения костей приводят к суммам в «девять» и «десять» очков. Галилей нашел, что «десять» осуществляется 27 способами, а «девять» — 25. Эмпирическое наблюдение получило теоретическое истолкование. Что же это за разница между числом представлений суммы через слагаемые и числом вариантов выпада костей?

Вот на какую тонкость необходимо обратить внимание. Рассмотрим сначала случай, когда на трех костях три разные цифры, скажем 1, 2 и 6. Этот результат может осуществляться шестью вариантами: единица на первой кости, двойка на второй и шестерка на третьей; единица на первой, шестерка на второй, двойка на третьей; также возможны два случая, когда двойка окажется на первой кости и еще два — когда на первой кости выпадет шестерка (этот вариант приведен в таблице).



Иначе обстоит дело, когда сумма представлена таким образом, что два слагаемых одинаковые, например, 1 + 4 + 4. Только один вариант такого разложения появится, если на первой кости покажется единица, а на двух других четверки, ибо перестановка цифры на второй и третьей костях не дает нового варианта. Второй вариант возникает, когда единичка покажется на второй кости, а третий, если она появится на третьей кости. Итого три возможности.

Наконец, ясно, что если сумма разложена на 3 + 3 + + 3, то на костях такое событие осуществляется единственным способом.

В нашей таблице это число вариантов указано в скобках рядом с представлением суммы. Складывая числа в скобках, мы получим 25 и 27, которые нашел Галилей. Вероятности появления на двух костях сумм 9 и 10 относятся как 25 к 27.

Это с виду простое объяснение не лежало на поверхности. Достаточно сказать, что Лейбниц полагал одинаковыми вероятности появления на двух костях как 11 очков, так и 12. После работы Галилея ошибочность такого заключения стала очевидной: 12 осуществляется единственным способом: двумя шестерками, а 11 появляется в двух случаях, когда шестерка на первой кости, а пятерка — на второй, и наоборот.

При бросании двух костей чаще всего появляется сумма, равная 7. Имеется шесть возможностей набора этой суммы. Суммы 8 и 6 осуществляются уже пятью комбинациями каждая. Проверьте, если хотите, сами наше заключение.

Что наша жизнь — игра

«Чекалинский стал метать, руки его тряслись. Направо легла дама, налево туз.

— Туз выиграл! — сказал Герман и открыл свою карту.

— Дама ваша убита, — сказал ласково Чекалинский.

Герман вздрогнул: в самом деле, вместо туза у него стояла пиковая дама. Он не верил своим глазам, не понимал, как мог он обдернуться».

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература