Читаем Занимательная теория вероятности полностью

Наконец, если бы Лауэ заболел, а Книппинг был бы вполне аккуратным исполнителем, а Фридрих не допускал бы возможности другого подходящего места для пластинки, кроме как под прямым углом к лучу, то все это свелось бы к тому, что через полгода или год открытие дифракции было бы сделано в Англии отцом и сыном Брэггами. Брэгг-отец в то время придумывал самые разные подходы для исследования характера рассеивания рентгеновских лучей разными объектами и был также близок к обнаружению законов отклонения рентгеновских лучей.

Явление, о котором идет речь, оказалось в 1912 году яблоком, вполне созревшим. Легкого дуновения ветра было достаточно, чтобы оно упало, и тайное сделалось явным. Пришла пора этому открытию, весь комплекс случайностей был существенным лишь для самого несущественного: месяцем раньше или месяцем позже; в Англии или в Германии; Лауэ или Брэ. Разве это важно?

Два крупнейших научных открытия — открытие рентгеновских лучей и наблюдение дифракции этих лучей — превосходно, как мне кажется, иллюстрируют эфемерную роль случайности в событиях такого рода.

Но число подобных примеров можно было бы умножить.

Делать этого мы, однако, не станем, а скажем лишь, что остановились мы на рентгеновских лучах не случайно, так как без знакомства с их дифракцией мы не доберемся до структуры гена.

Радости и огорчения структурщиков

Есть большое семейство исследователей, которое называется структурщиками. Такого слова в словаре нет, так как оно жаргонное, лабораторный сленг, но распространенное. Физики, химики, биологи называют так тех, кто занят определением атомной структуры вещества, кто всей своей работой пытается ответить на вопрос: как вещество построено из атомов (как устроен сам атом, интересует людей другой специальности).

В своей работе структурщики используют явление, открытое Максом Лауэ: наблюдают дифракцию рентгеновских лучей от кристалла, структуру которого хотят определить.

Как уже говорилось, при прохождении луча через кристалл на фотопластинке обнаруживается картина со множеством пятен — следов отклоненных (диафрагмированных) лучей. Если ставить кристалл под разными углами к лучу, то каждый раз мы будем фиксировать другие пятна. Всего от кристалла средней сложности можно получить несколько сот или даже несколько тысяч разных дифракционных пятен. Расстояния между пятнами, а также их интенсивность хранят богатейшую информацию о структуре всего кристалла и составляющих его молекул. Но извлечь из таких картин сведения о пространственной конфигурации одной молекулы и о взаимном расположении всех оказывается задачей совсем нелегкой, и, естественно, тем более трудной, чем сложнее химическая формула молекулы.

Насколько задача определения структуры кристалла (трехмерное тело) сложнее нахождения расстояния между щелями дифракционной решетки (двухмерный объект), простейшего примера использования дифракционного опыта для определения геометрии объекта, поясним на таком сравнении.

Аналогом кристалла в двумерном мире, очевидно, будет «решетка» обоев. Пусть на обоях в детской комнате изображены девочки, играющие с мячом. Все девочки и все мячи, разумеется, совершенно одинаковы. Художник мог по-разному расположить этих девочек: либо одну над другой, либо с каким-то сдвигом, либо по три девочки в вершинах треугольника и так далее. Короче говоря, девочки могут быть расположены, или, как говорят в отношении молекул, упакованы по-разному. Вполне понятно, что при описании обоев вовсе недостаточно лишь указать расстояния между девочками и их взаимное расположение; нужно знать, как нарисована девочка: какое у нее платье, какие кудряшки, какой мячик и где он находится. Так и для кристаллического вещества нужно знать не только упаковку молекул, но и знать, как построена молекула. А получить эти сведения во много раз труднее, чем измерить расстояние между девочками на обоях и описать их вид. Кристалл построен из молекул, которые вполне аккуратно, то есть периодически, заполняют пространство, образуя трехмерную пространственную «решетку». В какой же связи находятся пятна на рентгенограмме (так называется пластинка, на которой зафиксированы дифракционные пятна) с упаковкой молекул и строением каждой молекулы?

Если говорить о принципиальной стороне дела, то ответить на этот вопрос легко. Только что при помощи простого рисунка мы пояснили, как появляются соотношения между углом отклоненного луча и расстоянием между щелями дифракционной решетки. Природа связи между рентгеновской дифракционной картиной и структурой вещества та же самая.

Но количественное усложнение — переход от простой линейной последовательности рассеивающих объектов (щелей) к сложнейшему пространственному рисунку атомов, берущих на себя роль рассеивающих центров, — воистину грандиозное.

Уже давно решение математических задач поручено вычислительным машинам. Сотрудничая с математиками-программистами, я не раз пытался объяснить сущность радостей и горестей структурщиков.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Путь Феникса
Путь Феникса

Почему фараоны Древнего Египта считали себя богами? Что скрывается за верованиями египтян в загробную жизнь на небесах и в подземное царство мертвых? И какое отношение все это имеет к проблеме Атлантиды? Автор книги — один из самых популярных исследователей древних цивилизаций в мире — предлагает свой ключ к прочтению вечной тайны египетских пирамид, Великого Сфинкса и загадочного образа священной птицы Феникс; по его убеждению, эта тайна чрезвычайно важна для понимания грядущих судеб человечества. Недаром публикацию его книги порой сравнивают с самим фактом расшифровки египетских иероглифов два века назад.Alan F. Alford.THE PHOENIX SOLUTION. SECRETS OF A LOST CIVILISATION© 1998 by Alan F. Alford

Алан Ф. Элфорд , Алан Элфорд , Вадим Геннадьевич Проскурин

Фантастика / История / Научная литература / Боевая фантастика / Технофэнтези / Прочая научная литература / Образование и наука