Взять, к примеру, широкие взмахи руки из стороны в сторону и едва заметные взмахи пчелиных крылышек. Жужжание пчелы, подлетающей к вашей компании на пикнике, вы слышите отчетливо — пчела машет крылышками с частотой около 180 раз в секунду. То есть с частотой 180 герц; эта величина названа по имени жившего в девятнадцатом веке немецкого физика Генриха Герца, который впервые доказал существование радиоволн. Итак, пчела возвращается в улей, чтобы поведать о точном местонахождении моего пирога с заварным кремом — ползая среди своих товарок, она принимается вилять брюшком. Ее движения при этом еще менее заметны, чем взмахи крылышек, к тому же частота их повышается до 500 герц.{38}
Однако возникающие в результате этих невероятно малых колебаний давления акустические волны слышны довольно четко — они находятся в пределах того самого частотного диапазона (от 20 до 20 000 герц), что доступен нашему слуху. Взмахи крылышек и виляния брюшком вызывают колебания атмосферного давления постоянной частоты — мы даже слышим их, как музыкальные ноты. Чем выше периодичность последовательностей из гребней высокого давления, достигающих нашего уха, тем отчетливей мы различаем в них музыку. Пасечник с абсолютным слухом слышит в более громком жужжании виляющей брюшком пчелы ноту «си». На фортепиано это нота «си» первой октавы.Пожалуй, хорошо, что наши барабанные перепонки обладают такой чувствительностью: ведь суммарная мощность от звуковых волн, порождаемых играющим в полную силу оркестром, равна мощности, потребляемой одной-единственной лампочкой накаливания в 100 Вт{39}
. Кстати, стоит помнить, что путь от оркестровой ямы до нашего кресла в зале проделывает не сам воздух — воздух, в общем и целом, остается там, где и был. До нас же доходит энергия в виде локальных колебаний воздуха. Получается, мы слышим вовсе не истинный «ветер» Моцарта.Устройство нашего слухового аппарата тоже довольно замысловато, ведь звуковые волны от каждого музыкального инструмента проплывают через весь концертный зал и достигают нас, уже слившись в одно целое. Иначе невозможно, потому как все волны распространяются через одну и ту же воздушную среду, которая в каждый момент времени в каждой точке пространства способна сжаться или расшириться единожды. Поэтому волны объединяются в одну цепь колебаний, сложную последовательность из сжатий и разрежений, которая воздействует на наши барабанные перепонки — перепонки начинают колебаться в соответствии с ними. Наш мозг способен распутать эту хаотическую последовательность колебании — мы расшифровываем микроскопические движения тонюсенькой, всего около 6 мм в поперечнике и около 0,05 мм толщиной, пленки кожи настолько точно, что слышим даже кашель второй скрипки в середине второй части произведения. Разве это не истинное чудо?
Итак, мы не видим звук как волну. Однако его «волнообразность» от этого меньше не становится. Наоборот, звуковые колебания ведут себя в точности как классические волны. В частности, ловко демонстрируют три способа изменения волнового направления: отражение, рефракцию и дифракцию.
Последние два, рефракция и дифракция, уж больно смахивают на абракадабру, придуманную сухарями-физиками — вполне возможно, так оно и есть. Но не стоит впадать в тоску раньше времени. Благодаря проявлениям свойств этих вездесущих волн мы постигаем мир. Разобравшись в их свойствах, вы овладеете всеми тонкостями наблюдения за волнами.
Мои домашние уже успели проникнуться к отражению, рефракции и дифракции известной долей уважения; отныне они называют эти явления не иначе как «Законы волны».
Начнем с отражения. Первый закон волны прост:
Ну да, на открытие века не тянет. Однако выяснилось следующее: отскакивают волны в манере, гораздо более замысловатой, нежели мяч на площадке для игры в сквош, — вам такое и не снилось.
Кстати, именно тот факт, что звук отскакивает от стен, порождая эхо, впервые побудил мыслителей древности задуматься: а ведь звук вполне может иметь нечто общее с волнами на воде. Например, в конце I в. до н.э. римский архитектор Марк Витрувий Поллион (более известный как просто Витрувий), размышляя о необходимости учитывать при проектировании театров отражение звука, предположил, что «голос же есть текучая струя воздуха», и она «соприкасаясь со слухом, ощущается им. Голос двигается по бесконечно расширяющимся окружностям, подобно тем бесчисленным кругам волн, какие возникают на спокойной воде, если бросить в нее камень…»{40}