Промежуток времени между отражениями эха от одной и другой границы обозначает расстояние до границы, а интенсивность звуковой волны обозначает ее четкость — например, граница это между мышечной тканью и костью или между двумя мягкими тканями. Способность волны проходить через любую преграду позволяет специалисту «проникнуть» глубоко внутрь организма. Отражение от одной границы дает возможность составить представление о состоянии организма на поверхностном уровне, в то время как проходящие дальше волны позволяют судить о процессах на более глубоких уровнях.
Датчик, испускающий звуковой сигнал и воспринимающий эхо, имеет резиновое покрытие, которое по плотности приближается к человеческой коже. Когда предварительно обработанный гелем датчик прикладывают к определенному месту, лишь незначительное количество энергии успевает отразиться до того, как сигнал проникает в тело. Волны идут из датчика через гель и далее под кожу; изменение плотности среды на этом этапе минимально.
Сказав, что «волны при встрече с препятствием отскакивают», вы тем самым дадите понять, что Первый закон волны всех аспектов различия между отражающейся волной и отскакивающим мячом не охватывает. И окажетесь правы. Наблюдатели за волнами сродни мыслителям; размышления о том, каким образом волны «отскакивают», раскрывают перед ними основополагающую истину: волны — это энергия, проходящая через предметы. Отдельно, сами по себе, волны не существуют.
Рефракция, Второй закон волны, заключается в следующем:
Знаю-знаю — факт еще более очевидный, чем тот, что волны отскакивают от препятствий.
Тем не менее, это одна из фундаментальных характеристик волн. И вообще, рефракция — фокус, который есть в арсенале у каждой мало-мальски уважающей себя волны.
Чтобы волна изменила направление именно так, а не иначе, необходимы два условия: во-первых, волна должна подойти к границе двух сред не «в лоб», а под определенным углом; во-вторых, скорость распространения волны через одну среду должна отличаться от скорости ее распространения через другую. Если волна входит под непрямым углом в среду, где ее скорость меньше, ее поведение слегка меняется. Если же волна входит в среду, где ее скорость больше, она опять же ведет себя иначе.
Звук изменяет направление движения все время, хотя в общем и целом мы этого не замечаем. Скорость звука довольно сильно зависит от среды распространения. Возможно, вам это покажется удивительным, особенно в свете всеобщих разговоров о «скорости звука», величине как будто постоянной, например, около 1191 км/ч, которую впервые развил в 1947 году американский летчик-испытатель Чарльз Йигер на самолете Х-1. Однако скорость звука, конечно же, не есть величина постоянная.
Например, в воздухе скорость звуковой волны в значительной степени зависит от температуры. При температуре 0° С волна распространяется со скоростью 1 191 км/ч. Однако при комнатной температуре + 23,5° С голос диктора из новостной передачи достигает ваших ушей, распространяясь со скоростью около 1 239 км/ч. Происходит так потому, что независимо от объема воздуха скорость, с которой перепады давления идут из одной области в другую, зависит от скорости движения молекул. А чем выше температура газообразной среды, тем выше скорость движения молекул в ней.
В жидкостях звук перемещается еще быстрее, нежели в газообразных средах. На первый взгляд, такое утверждение противоречит здравому смыслу, ведь вода должна оказывать большее сопротивление, нежели воздух. Однако сопротивление возникает только в том случае, когда через водную среду продвигается отдельный предмет, искажая ее по мере продвижения. В случае же со звуковыми волнами все происходит иначе. Когда звук распространяется через среду, его продвижение обусловлено собственными колебаниями этой самой среды. Одни молекулы сталкиваются с другими, другие — с третьими и так далее. Поскольку плотность расположения молекул в жидкости выше плотности расположения молекул в газе, колебания — а это и есть звуковые волны — перемещаются быстрее в жидкости.
Например, в морской воде с температурой + 25° С звуковые волны перемещаются со скоростью 5 520 км/ч, то есть почти в четыре раза быстрее, чем в воздушной среде. При повышении температуры волны понесутся еще стремительнее. Вот почему периодически проводимые эксперименты с точными замерами времени, за которое звук прошел под водой от источника на одном краю океана до микрофона на другом, позволяют ученым составить представление об изменениях температуры океана из десятилетия в десятилетие. На скорость звука, проходящего через любую жидкую среду, влияет также плотность этой среды и сила ее сопротивления сжатию.