Известно, что
g = 9,8 м/с2;
R = 6370 км.
Выполнив вычисления, получаем искомую скорость
Указанным способом можно вычислить скорость и в других подобных случаях. Например, для определения скорости ракеты, взлетающей с Луны по направлению к Земле, имеем уравнение:
Здесь предполагается, конечно, что ракета должна достичь лишь точки равного притяжения, откуда начнется падение на Землю. Зная, что масса
откуда v = 2,27 км/с – на сто метров меньше, чем скорость, вычисленная без принятия в расчет притяжения Земли. С такой же скоростью должно удариться о лунную почву тело, падающее на Луну из точки равного притяжения, имея Землю позади себя.
Так производится расчет наличной скорости для артиллерийского снаряда, скорости, имеющей максимальное значение на земной поверхности. В случае ракеты скорость на уровне земной поверхности равна нулю и постепенно растет по мере взлета ракеты, пока не прекратится горение заряда. Следовательно, максимальную свою скорость ракета приобретает на некоторой высоте над Землей, где напряжение тяжести, естественно, меньше, чем на уровне моря. Поэтому максимальная скорость, уносящая ракету в межпланетный полет, меньше, чем для пушечного снаряда. Вычислим ее, сделав предпосылку, что ракета летит с ускорением, равным утроенному ускорению земной тяжести.
Обозначим высоту, на которой ракета приобретает максимальную скорость v, через х. Известно, что v2 = 2 · 3
Потенциальная энергия единицы массы ракеты на уровне × равна, согласно предыдущему:
Потенциальная энергия той же единицы массы на высоте 54,3R (в точке равного притяжения) выражается суммой
Потеря потенциальной энергии при перемещении ракеты с уровня × на уровень
и должна, мы знаем, равняться кинетической энергии единицы массы ракеты, т. е. – 1/2v2, или 3