Читаем Занимательный космос. Межпланетные путешествия полностью

откуда х = 0,2616, R = 0,2616 · 6370 = 1666 км.

Теперь из уравнения v2 = 6gx находим v = 9750 м/с.

Итак, ракета, отвесно направляющаяся к Луне, достигает наибольшей своей скорости – 93/4 км/с – далеко за пределами земной атмосферы. Число секунд t, в течение которого накапливается эта скорость, определяется из уравнения 9750 = 3·9,8 t, откуда t = 321 с. Можно вычислить, что под действием земной тяжести ракета потеряет 321 · 7,76 = 2490 м своей секундной скорости (7,76 – средняя величина ускорения тяжести на протяжении 1666 км от земной поверхности). В общем итоге запас энергии, каким надо снабдить ракету для отвесного полета на Луну, должен отвечать скорости 9750 + 2490 = 12 240 м/с.

Сходным образом можно установить, что при отвесном подъеме ракеты с Луны она приобретает максимальную скорость (2300 м/с) на высоте 90 км, после 76 с подъема. И обратно: падая от точки равного притяжения на лунную поверхность, ракета должна начать замедление полета на высоте 90 км, чтобы при ускорении (отрицательном) 3g свести свою 2300-метровую скорость к нулю.

Вычисляя скорость, с какою тело должно покинуть Землю для удаления в бесконечность, мы принимали, что Земля – единственный центр, притяжение которого тело должно при этом преодолеть. На самом же деле приходится считаться также и с притяжением Солнца. Чтобы учесть это обстоятельство, установим сначала зависимость между скоростью тела на орбите и другими величинами.

Рис. 59. К расчету скорости полета

По второму закону Кеплера, площади, описываемые радиусом-вектором в равные времена, равны. Пусть тело (планета) движется вокруг Солнца по эллипсу с полуосями а и Ь; период обращения Т секунд, секундная скорость V, радиус-вектор г; тогда для точек перигелия и афелия имеем равенство

где левая часть есть выражение (приближенное) для площади, описываемой радиусом-вектором за одну секунду,

a πab — площадь эллипса. Имеем:

Пусть теперь тело (звездолет, планета), движущееся вокруг Солнца по круговой орбите радиуса r, должно перейти в точке А своего пути на эллиптическую орбиту с полуосями а и Ь. Определим, какое для этого необходимо изменение скорости.

Из третьего закона Кеплера следует, что отношение квадрата периода обращения планеты к кубу ее среднего расстояния от Солнца (или большой полуоси) есть величина постоянная; для планет солнечной системы эта постоянная равна (в единицах системы см-г-сек)

откуда

Отсюда имеем скорость v кругового движения около Солнца на расстоянии r:

Обращаясь к эллиптической орбите, имеем прежде всего

Из формулы (5) мы знаем, что скорость vЭ движения по эллиптической орбите в точке А

Так как скорость vK, движения по круговой орбите (см. (6))

то из сопоставления формул (6) и (7) имеем

По этой формуле и вычисляется скорость, какую необходимо сообщить звездолету, чтобы с круговой орбиты он перешел на эллиптическую или удалился в бесконечность. В последнем случае полагаем большую полуось а эллипса равной бесконечности. Имеем:

т. е. для удаления звездолета с круговой орбиты в бесконечность необходимо, чтобы круговая скорость его увеличилась в 

раз. Так, для удаления с земной орбиты (соответствующая скорость 29,6 км/с) в бесконечность нужна скорость

т. е. приращение скорости 41,8 – 29,6 = 12,2 км/с.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже