В частном случае механики: известно расстояние в функции времени, как вычислить скорость, и наоборот: при известных скорости и времени как вычислить пройденный путь? В современных терминах: вывести пространство из временных отношений и интегрировать в скорости. Не вдаваясь слишком в технические детали, необходимо тем не менее сказать, что Ньютону удалось доказать многие важные правила дифференциального и интегрального исчисления; кроме того, он ввел понятие второй производной (производной производной; в случае механики: ускорение) и производной любого порядка; он строго теоретически обосновал связь между производной и интегралом и решил первые дифференциальные уравнения (с одной неизвестной функцией). Из вышеперечисленного явствует, что механика внесла ощутимый концептуальный вклад в выработку новой математической теории. Ньютон рассматривал математику с точки зрения инструментальной концепции: математика для него служила языком описания природных явлений. В этом его позиция совпадала с позицией Гоббса.
Итак, теория Ньютона оказывается во власти своего особого происхождения. Ее формализованность (х, у, z — для функций; х', у', z' — для производных; х0
, уо, zO — для дифференциалов) имеет большую ценность для специалистов по механике, в которой деривация относится ко времени и производные имеют фиксированный смысл (первая производная — скорость, вторая — ускорение), но оказывается негибкой и неплодотворной в других секторах науки. Кроме того, в формализации Ньютона нет символа для интеграла. Именно такие критические замечания были высказаны другим великим основателем исчисления бесконечно малых величин — Готфридом Вильгельмом Лейбницем (1646—1716).Лейбниц приходит к той же проблеме иным путем. Он основывается на блестящих работах по аналитической геометрии (в том числе и неизданных) Блеза Паскаля. На математической, а не физической основе Лейбниц выводит теоретическое определение производной в точке кривой как углового коэффициента прямой линии, касательной в данной точке (то, что мы называем сегодня тригонометрической касательной (тангенсом) угла, который она образует с осью абсцисс); эта касательная прямая понимается как идеальная секущая в этой точке и в другой, бесконечно близкой к данной. С вышеизложенными рассуждениями связано хорошо известное, более распространенное и общеупотребительное в наши дни обозначение dx, dy — для дифференциалов переменных х и у, и dy/dx — для производной у к х. Кроме того, Лейбниц вводит заглавное S для обозначения интеграла; это обозначение также стало общеупотребительным. Во всем остальном его теория не очень отличается от теории Ньютона; более или менее аналогичны и результаты последующей ее разработки. Однако Лейбницу также недостает фундаментальной математической точности, ибо еще не упрочилось и не получило теоретического обоснования понятие «предела».
Концептуальные его основы уже были в «Арифметике бесконечного» Джона Валлиса, если пойти далее, эта идея присутствовала и в методе Евдокса Книдского (408—355 до н. э.) и с успехом применялась Евклидом и Архимедом для решения различных геометрических проблем. Однако строгое применение понятия на основе анализа бесконечно малых величин мы обнаружим лишь в XIX в. у Бернарда Больцано (1781 —1848) и у Огюстена Луи Коши (1789— 1857). Работа Лейбница написана примерно в 1672—1673 гг., следовательно, позже или по крайней мере одновременно с трудом Ньютона. Однако публикация его основного труда «Новый метод максимумов и минимумов, а также касательных» относится к 1684 г., т. е. на три года раньше публикации «Математических начал натуральной философии» Ньютона. Между Ньютоном и Лейбницем вспыхнул ожесточенный спор о приоритете открытия, но не станем на нем останавливаться.
Ньютон (тексты)