Все начинается с процесса репликации хромосом, в результате которого образуются две одинаковые сестринские копии каждой хромосомы. Вслед за этим автоматически запускается митоз. Когда клеточная оболочка удлиняется и цитоплазма начинает делиться, чтобы создать две одинаковые клетки, происходит удвоение клеточного центра – центросомы. Эти сестринские центросомы мигрируют к разным полюсам и начинают формировать так называемое веретено деления – систему белковых микротрубочек, которые выходят из этих противоположных полюсов и присоединяются своими концами к каждой сестринской хромосоме. В конце концов, микротрубочки отделяют сестринские хромосомы друг от друга, собирают их на противоположных полюсах и плотно упаковывают, чтобы образовать ядра дочерних клеток. Все, что нарушает ход этого сложного, отлаженного процесса, приводит к тому, что части хромосом или даже целые хромосомы не прибывают к месту назначения. Аномальные митозы могут вести к гиподиплоидии, когда дочерняя клетка получает значительно меньше 46 хромосом, или же к тетраплоидии, т. е. удвоению числа хромосом. Все случаи, когда клетки содержат измененное (некратное) количество хромосом вследствие их потери или получения лишних копий, собирательно называются анеуплоидией.
Впервые эту аномалию в образцах раковой ткани обнаружил и описал немецкий патолог Давид фон Ганземан в 1890 году. За ним последовал зоолог Теодор Бовери, который в начале XX века первым указал на то, что именно неправильная сегрегация хромосом из-за аномального митоза ведет к анеуплоидии и может давать начало развитию раковой опухоли в результате случайного образования злокачественной клетки, способной к
Как может тетраплоидия – удвоение хромосом – вести к злокачественности? Тетраплоидия может позволять клетке выжить, если та претерпевает всплеск мутаций, которые в противном случае могли бы оказаться фатальными. Тогда как в одной копии хромосом гены могут быть повреждены мутациями, те же самые гены могут продолжать нормально функционировать в сестринской копии. Однако тетраплоидия также открывает путь к нерегулярной анеуплоидии, характерной для большинства типов рака. Раковая клетка сначала может стать тетраплоидной, но постепенно «обстругать» свой геном, избавившись от ненужных частей или плеч хромосом, а иногда и целых хромосом.
Анеуплоидия может вести как к потере, так и к приобретению лишних генов. Если теряется часть хромосомы или целая хромосома, теряются и все находящиеся на ней гены. Поскольку все гены существуют в парах, называемых аллельными парами, в результате такой потери остается только один аллель данного гена. Оставшийся аллель подвергается дальнейшим мутациям, которые могут привести к полной потере данного гена. Когда это случается, например, с геном-онкосупрессором р53, мутантная клетка начинает игнорировать все сигналы, приказывающие ей умереть.
Анеуплоидия также способствует транслокациям – переносу участков хромосом на несвойственное им место, что приводит либо к образованию гибридных генов, как в случае лейкозов, либо к значительному увеличению количества копий отдельных генов – этот процесс называется амплификацией. Процесс потери или приобретения аллелей, т. е. изменение числа копий генов, может приобретать весьма широкий размах. Например, при раке толстой кишки, молочной железы, поджелудочной железы и простаты в среднем теряется 25 процентов аллелей, и совсем не редки ситуации, когда опухолевые клетки теряют более половины своих аллелей. Одно исследование показало, что при анеуплоидном колоректальном раке происходит в 10–100 раз больше таких хромосомных потерь и приобретений, чем в нормальных клетках или при диплоидных формах того же колоректального рака.