То же, как мы обнаружили, касается и футбольных матчей: одного-единственного фрагмента информации — принимающая команда выигрывает в 58 % случаев — достаточно, чтобы повысить точность прогнозирования результата по сравнению со случайной догадкой. Существенно помогает и второе простое соображение: команда с лучшей статистикой побед и поражений должна иметь небольшое преимущество. Все же прочие дополнительные данные — как себя вел защитник в предыдущем матче, травмы, проблемы с подружкой у фулбэка — в лучшем случае улучшат прогноз на йоту. Почему? Потому что в сложных системах существует некий предел в предсказании результатов, и первые два фрагмента информации — это фактически все, что нужно для его достижения. Прогнозы в сложных системах, другими словами, подчиняются закону убывающей отдачи.
Разумеется, существуют обстоятельства, при которых важны даже очень незначительные улучшения в точности прогноза. Например, в сфере онлайн-рекламы или торговли акциями с высокой периодичностью можно выдавать миллионы и даже миллиарды прогнозов каждый день — и ставкой будут крупные суммы денег. В этих случаях усилия и затраты, связанные с использованием наиболее совершенных методов, позволяющих учитывать даже самые незаметные тенденции, скорее всего, оправданы. Во всех же других сферах бизнеса (от съемки фильмов до издания книг и разработки новых технологий), где в год делаются несколько дюжин — максимум сотен — прогнозов и где они обычно являются лишь одним из многочисленных аспектов процесса принятия решения, добиться той же степени точности удается с помощью относительно простых методов.
Исключение здесь, которым пользоваться не следует, — руководствоваться мнением одного-единственного человека. Особенно своим собственным. Дело в том, что мы отлично вычленяем факторы,
Думаете, в таких типах суждений должны быть хороши эксперты? Как показал в своем эксперименте Тетлок, количественные прогнозы они делали не лучше неспециалистов — а то и хуже{182}
. Основная проблема с опорой на экспертов, однако, состоит не в том, что они заметно хуже не-экспертов, а в том, что, поскольку они специалисты, мы склонны консультироваться только с одним из них за раз{183}. Гораздо разумнее узнатьВместо того чтобы выискивать некий идеальный метод, гораздо целесообразнее просто определить, какие предсказания могут быть сделаны с минимальной ошибкой, а какие нет. При прочих равных, например, чем больше времени отделяет прогноз результата от самого события, тем большей окажется неточность. Все просто: какие методы ни используй, спрогнозировать потенциальный кассовый сбор фильма на стадии одобрения проекта гораздо труднее, чем за неделю или две до его премьеры. Кроме того, одни вычисления даются легче других, и с этим ничего не поделаешь. Как быть? Можно использовать любой из нескольких методов — или даже все вместе, как сделали это мы в исследовании рынков предсказаний, — и следить за их эффективностью в течение некоторого времени. Как я упоминал в начале предыдущей главы, отслеживание прогнозов не приходит само собой: мы делаем множество оных, но редко проверяем, насколько часто они оказываются верными. А ведь это — самое главное! Лишь установив степень точности, характеризующей те или иные предсказания, можно определить, какое значение следует им придавать{187}
.Когда будущее не такое, как прошлое