Мы теперь принимаем как само собой разумеющееся, что металлы и другие вещества имеют кристаллическое строение и что в отдельных точках (узлах) их кристаллической решетки располагаются атомы. Не сомневаемся мы и в том, что атомы могут быть с соблюдением масштаба представлены шариками для пинг-понга, апельсинами или иными круглыми предметами. Однако наши предки даже представить не могли себе, что плотная материя настолько рыхла. Потребовалось немалое воображение и многие десятилетия, чтобы поверить, что неисчислимое многообразие окружающего нас мира «построено» из менее чем сотни основных «кирпичиков» - химических элементов. И если ,все это действительно так, то почему атомы должны быть обязательно шарообразными? Казалось бы, куда «разумнее» представлять их себе в виде кубиков. Ведь, составленные вместе, такие кубики как раз и образовали бы ту плотную, непроницаемую материю, с которой мы сталкиваемся в нашей повседневной жизни. Ну что сказать на это? Конечно, атомы не шары. Но в большинстве случаев они ведут себя таким образом, что их удобно представлять именно в форме шариков. Иногда их удобнее описывать или изображать как крохотные планетные системы, где вокруг положительно заряженного ядра вращаются отрицательно заряженные электроны. Физики с успехом описывают атомы как волны. Для каждого из этих подходов существуют свои достаточно веские основания. Главным из них всегда служит предоставляемая той или иной моделью практическая змоэкность понять различные состояния атома или материи.
Если на это последует возражение, что, мол, должно все-таки существовать действительно правильное (то есть единственно верное) описание атома, то можно задать встречный вопрос: а почему, собственно, так должно быть? Здесь остается еще широкое поле деятельности для теоретиков и философов. В практичности же нашей «шариковой» модели убеждают связанные с нею большие успехи в области науки и техники.
Не только Уотсон и его коллеги получили Нобелевскую премию за работы с шариками-атомами. Еще в 1914 г. физик Макс фон Лауэ (1879-1960) был удостоен этого высокого международного отличия за доказательство того, что вещество «состоит из шариков с дырками между ними».
В 1912 г. в одном из мюнхенских кафе регулярно собиралась компания естествоиспытателей. Разумеется, и на досуге они обсуждали волновавшие их научные проблемы. Нередко можно было услышать: «А следовало бы как-нибудь...» Когда однажды возник спор о соотношении (предполагаемом) величин атомов разных элементов и о длине (тоже предполагаемой) волны рентгеновского излучения, то кто-то заметил: «А следовало бы как-нибудь поставить опыт, чтобы проверить, в такой ли мере соответствуют размеры атомов длинам волн рентгеновских лучей, чтобы последние испытывали дифракцию на атомных структурах».
Лауэ отправился в лабораторию и поручил своим ассистентам Вальтеру Фридриху (1885-1968) и Паулю Книппингу (1875-1935) провести эксперимент. Установили рентгеновскую трубку, перед ней поставили кристалл каменной соли, а за кристаллом - фотопластинку. На пластинке возникло изображение в виде характерного узора, подтвердившего разом и волновую природу излучения, и то, что структура кристалла представляет собой пространственную решетку. В последующие годы были развиты методы измерения междуатомных расстояний. Размеры решеток металлов (по ребру элементарного куба) оказались порядка 4 нм.
О РАЗЛИЧНЫХ ВИДАХ СВЯЗЕЙ
Когда ученые выяснили, что неорганический мир (за немногими исключениями) построен из кристаллов, в этой области исследований началась настоящая лихорадка. Рентгенологи просвечивали все известные вещества и измеряли получаемые на фотопластинках изображения в виде точек или линий (полос). Одни ученые устанавливали математические зависимости между явлениями, наблюдаемыми на рентгеновской пленке, и расположением атомов в кристаллах. Другие - приобретали цветные шарики разных размеров (соответствующие диаметрам атомов различных элементов) и сооружали из них решетки Браве.