Читаем Жар холодных числ и пафос бесстрастной логики полностью

С позиций современности Ars Magna была первой в истории попыткой использовать механическое устройство для облегчения логических действий, так что Луллий по всей справедливости мог бы претендовать на патент, удостоверяющий, что ему принадлежит «идея логической машины». В отношении же фактического осуществления этой идеи он ушел недалеко[4]. Не будем говорить о том, что само предположение о наличии в каждой области знания небольшого числа исходных понятий и положений уже является слабым местом метода; дело также в том, что прибор Луллия не доводит механическую процедуру до конца, до построения умозаключения, а лишь поставляет человеку исходный материал (сочетание понятий) для выведения следствий путем размышления. Рассматривая прибор Луллия как вычислительную машину, мы могли бы сказать, что эта машина способна выполнять единственную операцию — перебор вариантов, окончательный же результат может быть получен только с участием человека. Если читателю покажется, что устройство с такими характеристиками не имеет никакой ценности, заметим, что гигантские современные ЭВМ тратят значительную часть своего времени как раз на перебор, и что использование ЭВМ как составной части вычислительной системы «машина — человек» имеет огромное значение (это видно хотя бы из того, что отечественная малая электронная вычислительная машина «МИР-2» специально сконструирована для процедур, и которых она принимает участие попеременно с математиком).

Хотя идея логической машины, впервые высказанная еще в XIII веке, с тех пор не умирала, долгое время из нее ничего теоретически ценного и практически полезного не получалось. Поэтому средневековые схоластические логики продолжали изучать и совершенствовать силлогистику Аристотеля, пользуясь средствами естественного языка, к которым присоединялись простейшие диаграммы и буквенные обозначения.

Следующая попытка вдохнуть в логику новую жизнь была грандиозной по масштабу проекта и гениальной по замыслу. Непосредственно она не была связана с какими-либо приборами или другими физическими устройствами, хотя несомненна ее преемственность с методом Луллия. Эта попытка тоже повисла в воздухе, поскольку смелая мысль ее создателя опережала реальные возможности существовавшей в то время математики. Но и в этом случае идея не погибла, а перешла в некое состояние анабиоза, чтобы в должный час произвести свое действие. Мы говорим о любимой идее Готфрида Вильгельма Лейбница (1646—1716) — его «Универсальной характеристике».

Коль скоро мы коснулись некоторых сторон жизни Раймунда Луллия, то Лейбницу мы должны были бы отвести несколько страниц, если руководствоваться различием в их вкладе в мировую науку. Но о Лейбнице много написано и как об одном из создателей дифференциального и интегрального исчисления, и как о знаменитом философе, авторе теории монад — гипотетических бесконечно множественных первоэлементов мира, соединяющих в себе как материальное, так и духовное начало. Поэтому мы отметим лишь те черты великого ученого, которые начисто исключают предположение о его эмоциональной обедненности, могущее возникнуть у читателя после ознакомления с его программным тезисом.

Математика и логика составляли только небольшую долю тех предметов, в которых Лейбниц достиг вершин познания и успеха. Он был прославленным юристом, богословом, философом; он занимался историей, был придворным историографом, литератором и государственным деятелем; его занятия в каждой из этих сфер уже обеспечили бы ему сохранение имени в веках. Он был незаурядным организатором и, в частности, основал Берлинскую академию наук — впоследствии один из крупнейших научных Центров мира. Интересно, что Петр Первый неоднократно советовался с Лейбницем по вопросам образования и науки, в частности, обсуждал с ним план создания Санкт-Петербургской академии наук. Как и Луллий, Лейбниц съездил почти всю Европу, то выполняя поручения монархов, то гонимый своей неукротимой энергией и любознательностью.

Но как бы ни разрывался человек между многочисленными обязанностями и увлечениями, у него бывает главный замысел, иногда несколько смутный и призрачный, связанный с наибольшими надеждами, более всех Других дающий необходимое каждому ощущение осмысленности своей жизни и деятельности. Нет сомнения, что любимой мечтой Лейбница, которую он лелеял как самое драгоценное из всего, чем он занимался (в частности, как более драгоценное, чем дифференциалы и интегралы), была «Универсальная характеристика».

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика