Читаем Жар холодных числ и пафос бесстрастной логики полностью

Связки определим так же, как и в первой интерпретации, только вместо 1 в таблицах будем вписывать букву «и» («истинно»), а вместо 0 — «л» («ложно»). Тогда операция ~ окажется операцией обычного отрицания высказываний, формула ~ походит в истинное высказывание, если а при данной подстановке истинностных значений вместо всех своих переменных переходит в ложное высказывание, и в ложное высказывание, если а переходит в истинное высказывание[15]; операция & (конъюнкция) окажется соответствующей логическому союзу «и» и будет порождать истинное высказывание вида ( & ) тогда, и только тогда, когда а и истинны (то есть интерпретируются истинными высказываниями); операция V будет соответствовать слабой дизъюнкции, то есть соединительно-разделительному союзу «или» естественного языка: формула (а V ) принимает значение «истинно» тогда, когда хотя бы одна из двух формул, а, , переходит в истинное высказывание. Что касается введенных по определению знаков -> и , то первый из них соответствует логическому союзу «если..., то» (логическая операция импликация), а второй — союзу «если, и только если,..., то» (или «тогда, и только тогда, когда») (логическая операция эквиваленция).

Нетрудно убедиться, что ( -> ) переходит в ложное высказывание, когда а (посылка, или антецедент, импликативного выражения) принимает значение «истинно», а (заключение, или консеквент) — значение «ложно», в остальных же случаях импликативное выражение истинно; эквивалентность (а ) переходит в истинное высказывание в том, и только том, случае, когда а и принимают одно и то же истинностное значение[16].

При данной интерпретации каждая формула оказывается формой высказывания, или пропозициональной формой, то есть выражением, переходящим в высказывание (истинностное значение) при подстановке каких-то высказываний (истинностных значений) вместо всех ее пропозициональных переменных. Значение такой формы для всех возможных подстановок такого рода задается таблицей истинности, которая строится по данной формуле. Так, форме (~A1 & (A2 V ~A1)) соответствует следующая таблица (табл. 9; ср. табл. 6). В табл. 9 мы опустили промежуточные колонки, которые необходимы для того, чтобы получить ее правую колонку (они получаются из табл. 6 заменой «1» на «и», а «0» на «л» в колонках для формул ~А1 и (A2 V ~A1)).

Формулам, тождественно-равным единице (в предшествующей интерпретации), здесь соответствуют формы высказываний, принимающие значение «истинно» при любых значениях своих пропозициональных переменных (их называют тождественно-истинными формами высказываний или просто тождественно-истинными высказываниями); любая из таких форм может считаться интерпретацией константы 1. Формулам же, которые в предшествующей интерпретации были тождественно-равными нулю, теперь соответствуют тождественно-ложные высказывания (тождественно-ложные формы высказываний), и любое из таких высказываний есть интерпретация константы 0.

Равенство двух формул означает утверждение, что справа и слева от знака равенства стоят формы высказываний, принимающие одно и то же истинностное значение при любых значениях входящих в них пропозициональных переменных (равносильные формы высказываний); если это утверждение справедливо, то данное равенство 5 следует признать верным, в противном случае оно неверно.

В данной интерпретации особую роль играют тождественно-истинные высказывания. Некоторые из них выражают фундаментальные закономерности мышления. Таковы, в частности, формы высказываний ~(а & ~а) и (а V ~а) которые выражают логические законы, называемые соответственно законом противоречия и законом исключенного третьего (импликативное выражение (а -> а) соответствует закону тождества)[17]. Тождественно-истинные высказывания используются для определения важного понятия логического следования. Поясним это понятие.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика