Читаем Жар холодных числ и пафос бесстрастной логики полностью

А по своим потенциальным возможностям математика в середине XIX века уже в значительной мере созрела для того, чтобы приступить к уточнению программы Лейбница. Надо было только «навалиться всем миром», заострить на этой проблеме внимание, как когда-то оно было заострено на задаче о проведении касательной к данной линии, решая которую, Ньютон заложил основы дифференциального исчисления.

Но ничего подобного сделано не было. Ни одна академия не поставила проблему «искусственного мышления». Это выглядело бы в то время несерьезно. Даже «привязанные» отчасти к теории вероятностей и алгебраизованные по форме исследования Буля воспринимались как вещи, уводящие математику в сторону от основной дороги. Во второй половине XIX века центральными вопросами математики продолжали оставаться вопросы дифференциального и интегрального исчисления и дифференциальных уравнений, образующие область, которая известна как «математический анализ» или просто «анализ». Она возникла в результате открытий Ньютона и Лейбница и получила мощный импульс от их ближайших последователей, великих математиков XVIII и начала XIX в.—Эйлера, Лагранжа и Лапласа. Известно, что импульсы к созданию математического анализа были даны геометрическими и механическими задачами — такими, как вычисление площадей фигур (квадратур), длин кривых, моментов инерции, отыскание траекторий и т. п., решать которые прежними средствами было затруднительно или вообще невозможно.

Сразу же после своего появления анализ показал себя как исключительно мощный по своим возможностям инструмент. Это могущество метода так увлекло математиков, что они стали интенсивно расширять круг задач, решаемых анализом, и совершенствовать его формулы, способные, казалось, описывать и обсчитывать все на свете. Расширение сферы приложений анализа и увеличение его популярности заставляло наиболее вдумчивых математиков ставить задачу его обоснования, не зависящего от приложений геометрического или механического характера[2]. Внутренняя логика развития этой дисциплины ставила вопрос о строгости ее методов — проблему, над которой в первой четверти XIX века работали Б. Больцано и О. Коши и которая занимала умы таких великих математиков, как К. Ф. Гаусс и Н. Г. Абель.

Специалисты того времени по-разному относились к работам по логическому усовершенствованию теоретической части анализа. Конечно, математики не сомневались, что методы анализа дают адекватные результаты, но некоторых из них особенно сильно беспокоило желание установить «согласованность» всей системы его утверждений, то есть его «логическую прочностью. Они считали, что непогрешимость анализа должна быть не такой вещью, в которую приходится верить и которая подтверждается лишь косвенно — безупречной работой аппарата, а такой, которую можно доказать рассуждением. Ответом на эту потребность явился ряд теорий действительного числа — Р. Дедикинда, К. Вейерштрасса и Г. Кантора.

Действительные числа — основной объект анализа, поэтому последний нельзя считать логически совершенным, пока не установлена полная ясность в отношении понятия действительного числа. Понятие натурального числа представлялось тогда вполне ясным. Из натуральных чисел легко получаются рациональные числа — дроби. Но иррациональные числа — главную составляющую действительных чисел — определить уже значительно труднее. К. Вейерштрасс (1815—1897) разработал теорию действительных чисел, из которой вытекало, что их можно определить как бесконечные десятичные дроби. Если такая дробь является периодической (например, 0,333...), она отождествляется с рациональным числом (в нашем примере это 1/3)[3], если не периодической — то с числом иррациональным; таковы, скажем, известные числа и е, отождествляемые соответственно с бесконечными непериодическими десятичными дробями 3,1415926546... и 2,7182818289...

В обоих случаях мы выписали по десять знаков после запятой, поставив затем многоточие; последнее ясно показывает, какую роль в данной теории играет бесконечность: она заложена в самих объектах, возникающих в теории. Вейерштрассовское действительное число — если оно иррационально — нельзя написать на бумаге: не хватит ни бумаги, ни человеческой жизни[4].

Многие математики (Л. Кронекер и др.) видели в этом серьезный дефект теории Вейерштрасса, но, она все же прочно вошла в учебники анализа, ибо, как отметил Е. Т. Белл, «она работала»[5].

Более интересной для нас является теория действительных чисел Дедекинда[6]. Он придал иррациональным числам совершенно новый смысл, определив их как сечение в области рациональных чисел. Подход Дедекинда состоял в следующем.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика