Читаем Жар холодных числ и пафос бесстрастной логики полностью

«Разум, так сказать, пересматривает запас известных утверждений, относящихся к той же области, а иногда также и к соседним областям, он быстро проверяет одно за другим возможные отношения между подобными элементами, пока не откроет, если ему повезет, такого, которое сделает желаемое доказательство возможным. Однако это сканирование гораздо более беспорядочно и менее эффективно, чем, то, на котором лежит ответственность за телевизионное изображение. Для осуществления такого зигзагообразного продвижения нет никаких других полезных правил, кроме как запастись терпением да накопить побольше плодотворных или наводящих на размышление соотношений»[16].

Конечно, объективное значение могут иметь только те результаты интеллектуальной деятельности, которые верно отображают объект и выражаются в общеязыковых или логико-математических структурах, понятных (полностью или частично) для других людей. Методологические догадки и особенности эмоционального восприятия фактов одного человека могут быть, разумеется, интересными и полезными для другого человека, так как могут помочь ему думать и отыскивать решения проблем. Но объективная истина — окончательный результат индивидуальной или групповой мыслительной деятельности — должна быть реализуема в знаковой системе, поскольку она должна обладать свойством храниться, передаваться другим людям и поколениям людей и даже гипотетическим цивилизациям иных миров, как могут храниться и передаваться материальные предметы.

Истина есть описание, соответствующее описываемой реальности, соответствие не субъективное, а проверяемое и могущее быть овеществленным с той же степенью реальности, с какой существуют вещи. Такими свойствами обладают знаковые структуры, наделенные человеком смыслом, то есть выражающие его знания о действительности.

Кибернетические устройства очень хорошо выявляют элементы нашего мышления, имеющие объективную ценность. Объясняя свои идеи другому человеку, особенно на словах, мы можем навязать ему свое ощущение истины, загипнотизировать его своей горячностью, заразить энтузиазмом. Машина все это «пропустит мимо ушей»; ей не нужны эти «катализаторы» нашего логического мышления, а нужен лишь его формализуемый результат. Поэтому когда говорится, что ЭВМ может выводить теоремы, писать стихи, сочинять музыку, играть в шахматы и т. д., вовсе не имеется в виду, что машина делает это точно таким же способом, как человек; «лаборатории» ЭВМ и человека отличаются друг от друга столь разительным образом, что, пожалуй, их сближает (во всяком случае пока) в основном получение одного и того же результата. Правда, некоторые исследователи считают, что машинные процедуры и человеческое мышление используют сходные элементарные операции — переход некоторого объекта (нейрона, ферритового кольца) из одного состояния в другое, передача электрического импульса по проводнику, но схемы объединения этих атомарных операций в слаженно действующий механизм переработки информации глубоко различны.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика