Читаем Жемчужина Эйлера полностью

У этой формулы есть интересное следствие: в любом представлении планарного графа с E ребрами и V вершинами количество граней одинаково. Иными словами, если десять человек нарисуют планарный граф, поставив точки там, где пожелают, и проведя ребра, так чтобы они не пересекались, то у всех графов будет одно и то же число граней (F = 1 + E — V, если не считать неограниченной грани). Например, на рис. 13.5 показан граф с четырьмя вершинами и шестью ребрами и два его планарных представления с тремя гранями каждое.

Рис. 13.5. Два разных планарных представления одного графа будут иметь одно и то же число граней


Поскольку формула Эйлера применима только к планарным графам, часто она используется для доказательства того, что граф не планарный. Для иллюстрации этой идеи введем два важных семейства графов: полные графы и полные двудольные графы.

В полном графе с n вершинами, обозначаемом Kn, n вершин, и каждая пара вершин соединена ровно одним ребром. Это самый большой возможный граф с n вершинами, не имеющий ни петель, ни параллельных ребер. Графы K1… K5 показаны на рис. 13.6. Удалив петли из графа домино (рис. 11.11), мы получили бы граф K7.

Рис. 13.6. Полные графы K1, K2, K3, K4 и K5


С полным графом тесно связан полный двудольный граф. Он обладает тем свойством, что множество вершин можно разделить на два подмножества U и V, так что никакие две вершины, принадлежащие U, и никакие две вершины, принадлежащие V, не соединены ребром, а каждая вершина из U соединена с каждой вершиной из V ровно одним ребром. Если U содержит m вершин, а V— n вершин, то соответствующий полный двудольный граф обозначается Km,n. Графы K3,2 и K3,3 показаны на рис. 13.7. Типичный пример полного двудольного графа, который приводится в любом начальном учебнике по теории графов, — граф ресурсоснабжающих компаний. Множество U состоит из компаний (газовой, водопроводной, электрической и т. д.), а множество V — из клиентов. Поскольку каждый клиент должен получать ресурсы каждого вида, то получающийся граф полный двудольный.

Рис. 13.7. Полные двудольные графы K3,2 и K3,3


Мы хотели бы знать, какие из полных и полных двудольных графов планарные. Легко показать, что графы K1, K2, K3, K4, Km,1 и Km,2 планарные. Например, на рис. 13.8 мы видим, что K4 и K3,2 планарные. Оказывается, что все остальные графы интересующего нас вида непланарные. Воспользуемся формулой Эйлера, чтобы доказать, что K5 и K3,3 непланарные.

Рис. 13.8. K4 и K3,2 — планарные графы


Чтобы доказать, что K5 непланарный, мы воспользуемся техникой доказательства от противного. Предположим, что утверждение, которое мы хотим доказать, неверно (т. е. что граф K5 планарный), и покажем, что это приводит к логическому противоречию. Тогда можно будет заключить, что K5 непланарный. Г. Х. Харди писал: «Метод доказательства reductio ad absurdum, столь любимый Евклидом, — один из самых лучших инструментов математика. Это гораздо более “хитроумный” гамбит, чем любой шахматный гамбит: шахматист может пожертвовать пешку или даже фигуру, но математик жертвует партию»104.

Предположим, что K5 — планарный граф. Тогда мы сможем нарисовать K5 на плоскости, так что никакие два ребра не будут пересекаться. K5 имеет 5 вершин и 10 ребер. Формула Эйлера для планарных графов утверждает, что V — E + F = 2, поэтому в нашем планарном чертеже K5 должно быть 7 граней, включая неограниченную (потому что 2 = F — 10 + 5).

Каждое ребро является общей границей двух граней, поэтому 2E = pF, где p — среднее число сторон по всем граням. K5 — полный граф, поэтому в нем нет ни петель, ни параллельных ребер. Так как нет петель, то не существует граней, ограниченных только одним ребром, а поскольку нет параллельных ребер, то не существует граней, ограниченных двумя ребрами. Следовательно, среднее число ребер на одну грань должно быть не меньше трех. Это значит, что p ≥ 3 и 2E ≥ 3F. Но из того, что F = 7 и E = 10, следует, что 20 ≥ 21, т. е. мы пришли к противоречию. Поэтому K5 должен быть непланарным.

Аналогично можно доказать, что полный двудольный граф K3,3 непланарный (попробуйте сами!). Главное отличие заключается в том, что, поскольку K3,3 двудольный, путь, который начинается и заканчивается в одной и той же вершине, должен иметь четное число ребер. Поэтому в нем не может быть также граней с тремя сторонами.

В общем случае справедлива следующая теорема.


Граф Kn не является планарным для n ≥ 5, а граф Km n не является планарным, когда одновременно m ≥ 3 и n ≥ 3.


Оказывается, что в некотором смысле K5 и K3,3 — единственные препятствия, мешающие графу быть планарным. Знаменитая теорема Куратовского-Понтрягина утверждает, что граф может быть непланарным, только если он содержит в качестве подграфа K5 или K3,3. Например, граф на рис. 13.9 непланарный, потому что содержит копию K5.

Рис. 13.9. Пример непланарного графа, содержащего K5


Перейти на страницу:

Похожие книги