- Нет, я только применил ее к монетам. Игра очень древнего происхождения и зародилась, говорят, в Индии. Существует интересная легенда, связанная с этой игрой. В городе Бенаресе будто бы имеется храм, в котором индусский бог Брама при сотворении мира установил три алмазных палочки и надел на одну из них 64 золотых кружка: самый большой внизу, а каждый следующий меньше предыдущего. Жрецы храма обязаны без устали, днем и ночью, перекладывать эти кружочки с одной палочки на другую, пользуясь третьей, как вспомогательной, и, соблюдая правила нашей игры, переносить за раз только один кружок и не класть большего на меньший. Легенда говорит, что когда будут перенесены все 64 кружка, наступит конец мира.
- О, значит, мир давно уже должен был погибнуть, если верить этому преданию!
- Ты, по-видимому, думаешь, что перенесение 64 кружков не должно отнять много времени?
- Конечно. Делая каждую секунду один ход, можно ведь в час успеть проделать 3600 перенесений.
- Ну и что же?
- А в сутки - около ста тысяч. В десять дней - миллион ходов. Миллионом же ходов можно, я уверен, перенести хоть тысячу кружков.
- Ошибаешься. Чтобы перенести всего 64 кружка, нужно уже круглым счетом 500 миллиардов лет.
- «Только» 18 триллионов с лишком, если называть триллионом миллион миллионов.
- Погоди, я сейчас перемножу и проверю.
- Прекрасно. А пока будешь умножать, я успею сходить по своим делам.
И брат ушел, оставив меня погруженным в выкладки.
У меня получилось такое число[19]:
18 446 744 073 709 551 615. Брат, значит, был прав.
Вам, вероятно, интересно было бы знать, какими числами в действительности определяется возраст мира. Ученые располагают на этот счет некоторыми, конечно, лишь приблизительными данными:
Солнце существует…10 000 000 000 000 лет
Земной шар…2 000 000 000»
Жизнь на Земле… 300 000 000»
Человек…300 000»
В столовой дома отдыха за обедом зашла речь о том, как вычисляется вероятность событий. Молодой математик, оказавшийся среди обедающих, вынул монету и сказал:
- Кидаю на стол монету не глядя. Какова вероятность, что она упадет гербом вверх?
- Объясните сначала, что значит «вероятность», - раздались голоса. - Не всем ясно.
Рис. 87. Монета может лечь на стол двояко
- О, это очень просто! Монета может лечь на стол двояко: вот так - гербом вверх и вот так - гербом вниз. Всех случаев здесь возможно только два. Из них для интересующего нас события благоприятен лишь один случай. Теперь находим отношение
Дробь 1/2 и выражает «вероятность» того, что монета упадет гербом вверх.
- С монетой-то просто, - вмешался кто-то. - А вы рассмотрите случай посложней, с игральной костью например.
- Давайте рассмотрим, - согласился математик. - У нас игральная кость, кубик с цифрами на гранях. Какова вероятность, что брошенный кубик упадет определенной цифрой вверх, скажем, вскроется шестеркой? Сколько здесь всех возможных случаев? Кубик может лечь на любую из своих шести граней; значит, возможно всего 6 случаев. Из них благоприятен нам только один: когда вверху шестерка. Итак, вероятность получится от деления 1 на 6. Короче говоря, она выражается дробью 1/6.
- Неужели можно вычислить вероятность во всех случаях? - спросила одна из отдыхающих. - Возьмите такой пример. Я загадала, что первый прохожий, которого мы увидим из окна столовой, будет мужчина. Какова вероятность, что я отгадала?
- Вероятность, очевидно, равна половине, если только мы условимся и годовалого мальчика считать за мужчину. Число мужчин на свете равно числу женщин.
- А какова вероятность, что первые двое прохожих окажутся оба мужчинами? - спросил один из отдыхающих.
- Этот расчет немногим сложнее. Перечислим, какие здесь вообще возможны случаи. Во-первых, возможно, что оба прохожих будут мужчины. Во-вторых, что сначала покажется мужчина, за ним женщина. В-третьих, наоборот: что раньше появится женщина, потом мужчина. И, наконец, четвертый случай: оба прохожих - женщины. Итак, число всех возможных случаев - 4. Из них благоприятен, очевидно, только один случай - первый. Получаем для вероятности дробь 1/4. Вот ваша задача и решена.
- Понятно. Но можно поставить вопрос и о трех мужчинах: какова вероятность, что первые трое прохожих все окажутся мужчинами?
- Что же, вычислим и это. Начнем опять с подсчета возможных случаев. Для двоих прохожих число всех случаев равно, мы уже знаем, четырем. С присоединением третьего прохожего число возможных случаев увеличивается вдвое, потому что к каждой из четырех перечисленных группировок двух прохожих может присоединиться либо мужчина, либо женщина. Итого, всех случаев возможно здесь 4 х 2 = 8. А искомая вероятность, очевидно, равна 1/8, потому что благоприятен событию только 1 случай. Здесь легко подметить правило подсчета:
в случае двух прохожих мы имели вероятность
в случае трех -
Рис. 88. Игральная кость
в случае четырех - вероятность равна произведению четырех половинок и т. д.