Читаем Живой кристалл полностью

Пусть в обычный трудовой день из таксомоторного парка одновременно выезжает большое количество такси. Каждое из них движется, выполняя просьбу очередного случайного пассажира, и, значит, направление очередного рейса совершенно произвольно и никак не зависит от направления предыдущего рейса. Такси должно себя вести подобно хаотически блуждающему атому. Так будет, если в этот день нет события, которое привлечет к себе внимание многих, например, нет футбольного матча. Для простоты предположим, что в каждый из рейсов такси проходят по прямой одинаковые расстояния. Надо определить то среднее расстояние от таксомоторного парка, на котором будут находиться такси через некоторое время. Заметьте, речь идет о всех такси, а не об одном из них. Судьба одного может быть совсем исключительной: скажем, заглохнет мотор и длительное время, в течение которого иные такси обслужат множество пассажиров, испортившийся автомобиль простоит на месте. Или иной случай: очередному пассажиру требуется подряд сделать много однотипных рейсов, например таких: дом — вокзал, дом — вокзал... Или так: очередной пассажир окажется опаздывающим на работу сотрудником таксомоторного парка и попросит отвезти его в парк... Но чрезвычайно маловероятно, чтобы такая исключительная судьба постигла все такси, равно как маловероятно, чтобы все они устремились далеко за город, —день ведь трудовой, а не праздничный. Именно потому, что исключительная судьба атома (или такси) очень маловероятна, задача о среднем расстоянии группы атомов (или такси) от исходной позиции приобретает смысл. Решение этой задачи не настолько просто, чтобы его следовало излагать в популярной книге, и поэтому мы поступим так: опустив ход решения, запишем результат, а затем экспериментально убедимся в его правильности. Результат предельно прост:


X2n = па2.


Он означает, что если величину смещения X каждого из атомов после п скачков на одинаковое расстояние а возвести в квадрат, а затем вычислить среднюю величину этих квадратов X2n, то окажется, что она пропорциональна числу скачков.

Слово «скачок» появилось потому, что от такси мы уже перешли к атомам. Так как время ожидания очередного скачка (или время «оседлой жизни») в среднем постоянно и за время t атом совершит п = t/ скачков, приведенное уравнение можно переписать в другом виде:

 

Если теперь опять от атомов перейти к такси, то полученный результат означает, что среднее расстояние между многими такси и таксомоторным парком, из которого они вышли одновременно, со временем изменяется по закону t1/2 . Последнюю формулу удобно переписать в другом виде:


X2n=Dt


Величина D = а2/ называется коэффициентом самодиффузии.

При строгом расчете, когда учитываются все шесть возможных перемещений атома (вперед и назад вдоль каждого из трех направлений в пространстве), оказывается, что D = а2/6.

А теперь модельный эксперимент «блуждающие точки». Заставьте хаотически блуждать 10 точек, потребовав, чтобы каждая из них двигалась вдоль прямой: когда брошенная монета падает «орлом» — шаг вправо (например, сантиметровый), «решеткой» — такой же шаг влево. После того как все точки сделают одинаковое число шагов, надо величину смещения (в сантиметрах) каждой из них возвести в квадрат, эти квадраты просуммировать и разделить на число точек, т. е. на 10. Так будет найдена величина X2n. Затем такой подсчет надо повторить при нескольких других значениях числа шагов, вплоть до п = 100. Построив график зависимости X2n от п, мы убедимся, что, как это и предсказывает формула, которую мы записали, поверив в ее справедливость, X2n линейно увеличивается с ростом п. Такой эксперимент мы сделали, и его результаты изобразили на рисунках. Ушло на это два часа, трудились вдвоем, я бросал монету, товарищ вел записи, затем мы построили график зависимости X2n от п.

Хотелось бы в координатах X2n и п получить прямую, согласно формуле именно прямая и должна быть. На нашем графике точки, не ложась точно на прямую, рассыпаны вблизи нее. Это естественно, так как слишком мало точек и шагов, слишком мала статистика для того, чтобы вероятностные законы обрели точность. Однако и в нашем опыте (всего 10 точек, каждая по 100 шагов) закон X2n ~ п себя проявил.

Итак, оказывается хаос — не хаос! В нем скрыты строгие закономерности, которые себя отчетливо проявляют в процессе хаотических блужданий атомов в кристалле — тем отчетливее, чем больше атомов и чем большее число неупорядоченных скачков совершает каждый из них.

Нам, вглядывающимся в непременные признаки жизни кристалла, конечно же, следует познакомиться с количественными характеристиками того процесса, который мы называем «обычная классическая самодиффузия» или «бесцельное блуждание атомов в кристалле». Будем говорить главным образом о вакансиях, твердо помня при этом, как взаимообусловлены перемещения вакансий и атомов.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное