Начнем с сотворения модели явления, с поисков аналогий, которые могли бы помочь ответить на интересующие нас вопросы. Вспомним, что пластическая деформация сопровождается движением дислокаций. Естественно предположить, что звучание кристалла и движение в нем дислокаций — явления не независимые. Тем более, что сразу же напрашивается аналогия: движение пули в воздухе сопровождается «акустической эмиссией», или, попросту говоря, свистом. С пулей и воздухом все ясно: в пуле, имеющей массу
Здесь, пожалуй, рассуждения «по аналогии» следует прервать. Дальше опасно, легко можно заблудиться. Ну, например, летящая пуля свистит непрерывно, а при пластическом деформировании слышатся потрескивания. Удовлетворимся тем, что аналогия помогла нам понять основное: движущаяся в кристалле дислокация возмущает решетку, передает ей часть своей энергии, в решетке возбуждаются упругие волны, т. е. звук.
Имея в виду описанный дислокационный механизм, можно понять и причину прерывистого звучания. Дело в том, что тот непрерывный свист, который издает летящая пуля, видимо, издает и дислокация. Этот слабый звук наше ухо просто не улавливает. Но вот в момент, когда дислокация выходит за пределы кристалла и когда вместе с ее исчезновением скачкообразно выделяется вся принадлежащая ей кинетическая энергия (подчеркнем: не постепенно передается решетке, а скачкообразно, сполна), мы слышим резкий щелчок. У физиков, занимающихся акустической эмиссией кристаллов, есть специальный термин — «переходное излучение». Оно возникает, когда дислокация переходит из среды с одной плотностью в среду с другой плотностью. Это значит, что скачкообразно меняется масса дислокации, следовательно, и ее кинетическая энергия и, следовательно, должен прозвучать щелчок. Здесь, пожалуй, следует заметить, что термин «переходное излучение» теорией акустической эмиссии кристаллов был заимствован из электродинамики, той ее главы, которая посвящена движению заряда в среде. Пересекая границу между двумя средами, заряд излучает так называемое «переходное излучение».
Можно указать большое количество реальных ситуаций, при которых исчезающая дислокация (или дислокации) должна издавать щелчок. Ну, скажем, с некоторой скоростью навстречу друг другу в одной плоскости скольжения движутся две дислокации с противоположно ориентированными векторами Бюргерса. При встрече такие дислокации исчезают, аннигилируют, при этом выделяется энергия, равная сумме кинетических энергий обеих дислокаций. Если скорости движения дислокаций были не малы, то выделяющаяся при этом энергия может оказаться значительной. Если, например, +
10-1 зв 104 см/с, то в металлах, гдеМожет произойти и по-другому: кольцевая дислокационная линия (дислокационная петля) будет стягиваться в точку, следовательно, уменьшать свою длину, выделять энергию и возбуждать звук. Может быть и так: в процессе пластического деформирования дислокация сорвется с затормозивших ее стопоров и скачкообразно начнет двигаться, издавая при этом звук.
Мы интересовались, нельзя ли повлиять на звучание деформируемого кристалла. Конечно же, можно. Надо предварительно каким-либо способом ввести в кристалл дислокации, а затем, планомерно деформируя его, привести их в движение.
Нам осталось два дела. Во-первых, рассказать о том, как физики экспериментально исследуют звучание кристалла, обусловленное движением дислокаций, и, во-вторых, о том, как можно этот эффект использовать практически.