Читаем Живой кристалл полностью

Экспериментально реальность напряжения + обнаруживается в эффекте, который последние годы изучается очень тщательно и экспериментаторами, и теоретиками. Эффект состоит в том, что при переходе металла из нормального в сверхпроводящее состояние, когда электронное торможение исчезает, пластичность металла скачкообразно увеличивается. Этот эффект, который мог бы наблюдаться и на заре изучения сверхпроводимости, долго себя не проявлял, а в конце 60-х годов обнаружился во многих лабораториях мира.

Вот теперь очерк можно закончить.


РАЗМНОЖЕНИЕ И ГИБЕЛЬ ДИСЛОКАЦИЙ


Ансамблю дислокаций в кристалле свойственны эти два непременных признака жизни любой популяции: и размножение, и гибель составляющих ее индивидуумов. В книге о живом кристалле нельзя промолчать о том, как размножаются и как исчезают дислокации.

Вначале о размножении. О том, что оно должно происходить, теоретики обязаны были подумать сразу же, как только сочли, что деформация кристалла происходит вследствие движения дислокаций. Их логика должна была быть простой и прямолинейной. Кристалл, как известно, способен значительно деформироваться, и в течение длительного времени. Для этого наличных в нем дислокаций, которые, перемещаясь, «выходят из игры», может оказаться недостаточно, и, следовательно, необходимо появление новых. В том, что дело обстоит именно так, легко убедиться, если воспользоваться уже встречавшейся нам формулой, которая определяет связь между величиной деформации , плотностью подвижных дислокаций 0 и величиной перемещения каждой из них li. Если мы сочтем, что все дислокации «выйдут из игры», пройдя максимальный путьlmax, то деформация, согласно нашей формуле, окажется следующей:


max = 0blmax .


Опыт свидетельствует о том, что в реальных кристаллических телах величина lmax оказывается небольшой, приблизительно равной 10-3—10-2 см; пройдя такой путь, дислокации «выходят из игры» по разным причинам: либо достигают границы зерна, либо выходят за пределы образца, либо, встретив стопор, теряют подвижность, а следовательно, и способность вносить вклад в формирование кристалла. При 0 107 см-2 и b 3• 10-8 см оказывается, что max = 10-4 - 10-3. А в действительности, благодаря движению дислокаций, кристалл может деформироваться в несравненно большей степени. Это и означает, что в процессе деформирования в нем, видимо, должны рождаться новые подвижные дислокации.

Когда речь идет о размножении живых организмов, имеется в виду увеличение числа особей. В случае дислокаций имеется в виду нечто иное, а именно увеличение их плотности. А так как плотность дислокаций 0 = lb/V , где lb — суммарная протяженность дислокационных линий в объеме V, то под размножением следует понимать увеличение lb. Итак, оказывается, что размножение дислокации есть попросту ее удлинение.

Вот теперь можно поговорить о конкретном механизме размножения. Об одном из многих. В литературе он называется механизмом Франка — Рида.

Практически все необходимое для того, чтобы понять этот механизм, уже было рассказано в очерке о «росе», тормозящей движение дислокаций. После того, как участок дислокационной линии, заторможенный двумя неподвижными «росинками»-стопорами, напряжением max будет «продавлен» сквозь стопоры, в плоскости скольжения он превратится в замкнутый круг и в участок дислокационной линии между стопорами. Этот участок так же может превращаться в круг, повторив предыдущий цикл. Он окажется очагом размножения дислокационной линии, так как ее суммарная длина в этом процессе возрастает. Разумеется, до тех пор, пока действует напряжение, способное «продавить» заторможенный участок дислокационной линии сквозь стопоры. Рисунок это отчетливо иллюстрирует.

В кристалле могут быть и одиночные замкнутые петли, и полупетли, которые обоими концами выходят на поверхность кристалла. Их расширение или сжатие также приводит к размножению или гибели дислокаций.

Коротко о механизмах «гибели» дислокаций. Один из механизмов может быть обратным тому, который приводил к размножению. Действительно, если перестать дуть в трубку, на торце которой расположен мыльный пузырь, он через трубку выдавит из себя газ и «схлопнется». Подобно этому «схлопнется» и замкнутая дислокационная линия («петля»), если внешние напряжения перестанут ее растягивать. То же относится и к «полу-петле», которая не замкнута на себе, а выходит на поверхность кристалла.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное