Читаем Живой кристалл полностью

Обсудим случай, когда крупинки почему-либо вообще не могут двигаться и по отношению к дислокации окажутся неподвижными стопорами, мешающими ее движению. А дислокация должна была бы двигаться, так как извне к ней приложено некоторое напряжение. Оно должно вызвать пластическое деформирование кристалла, которое не может происходить, если дислокации неподвижны. Под влиянием приложенных напряжений участок дислокационной линии, расположенный между двумя стопорами, должен будет изгибаться, подобно натягиваемой тетиве лука. Но изгиб дислокационной линии означает ее удлинение, а следовательно, увеличение связанной с ней энергии. Это вполне достаточное основание для того, чтобы дислокация сопротивлялась изгибающим усилиям, чтобы появлялось напряжение, противодействующее тому, которое приложено извне.

Иной образ, иная модель: все происходящее с застопоренным участком дислокационной линии очень подобно тому, что происходит с пленкой мыльного пузыря, выдуваемого на соломинке. По мере того как плоская мембрана из мыльной пленки, закрывающей торец соломинки, начинает выгибаться под влиянием давления газа, увеличивается противодавление, обусловленное изгибом мембраны. Это давление, как известно, равно Р = 2Рл = 4/R, где Рл — лапласовское давление, множителем 2 учтено наличие двух поверхностей у мыльной пленки, R — радиус ее изгиба, — поверхностное натяжение. Легко себе представить, что радиус изгиба пленки меняется от бесконечной величины, когда пленка в виде плоской мембраны перекрывает торец соломинки, до величины, соответствующей радиусу раздутого пузыря. Минимальное значение радиус изогнутой пленки принимает тогда, когда она становится полусферической, опирающейся на периметр соломинки, как на экватор: Rтiп = d/2, d — диаметр соломинки. Из рассказанного следует, что для того, чтобы раздуть мыльный пузырь, надо в трубке создать давление, превосходящее Рmах = 8/d. При таком давлении раздуваемая пленка станет полусферической, и ее дальнейший рост, когда R d/2, требует уже меньшего давления газа.

Теперь, пожалуй, ясно: для того чтобы «продавить» участок дислокационной линии в зазоре между двумя неподвижными стопорами, расстояние между которыми l, нужно преодолеть некоторое максимальное, создаваемое дислокацией, напряжение mах. Расчет показывает, что mах определяется формулой

mах = 2Gb/l ,

подобной той, которая определяет Ртах для мыльного пузыря. Дело в том, что — величина поверхностного натяжения пленки, а Gb — величина, пропорциональная линейному натяжению дислокационной линии. Так как G 1012 дин/см2, b 3.10-8 см, то при l 10-4 см оказывается mах 6.108 дин/см2. То есть для того, чтобы заставить дислокацию двигаться, надо приложить к ней очень большие напряжения. То же другими словами: если росинки-стопоры расположены вдоль дислокации и если к дислокации приложено напряжение mах, она окажется неподвижной. Очень важное заключение! Композиторам сплавов оно подсказывает отличную идею: если хочешь воспрепятствовать пластичности кристалла, введи в него такую примесь, которая в виде росинок осядет вдоль дислокаций и застопорит их. Хочешь добиться сопротивляемости кристалла деформированию вплоть до высоких напряжений, посади на дислокации стопоры-росинки почаще. Оставим в стороне вопрос о том, как эти идеи осуществить в конкретной ситуации. «Как» — это вопрос очень конкретный. Его решают технологи применительно к конкретным сплавам. А вот общая идея застопорить дислокации выделениями — это то, что заслужило внимание и ученых, и технологов всех рангов.

Возможность осадить «росу» вдоль дислокационной линии нашла себе еще одно применение. Хочется сказать: красивое применение. Вспомните: перед восходом солнца паутина, усеянная росой, видна значительно отчетливей, чем после того, когда солнечные лучи испарят росинки. Капельки росы декорируют невидимые волоски паутины, и они становятся видимыми. Потеряв росинки, нити паутины как бы исчезают.

В прозрачных кристаллах можно сделать видимыми дислокационные линии, если их продекорировать посторонними частицами. Отлично это, в частности, получается, если вдоль дислокаций в кристалле NаСl осадить частицы серебра.

Для этого очерка я подобрал фотографию, на которой видны дислокации, продекорированные серебром. Для полноты аналогии выбран такой участок кристалла, где дислокационные линии образуют зримое подобие паутины.


ЕЩЕ РАЗ ОБ ЭЛЕКТРОННОМ ВЕТРЕ


Еще раз к электронному ветру мы обратимся в связи с тем, что в ходе нашего повествования в кристалле поселились дислокации. Электронный ветер, обдувая дислокацию, будет действовать на нее с некоторой силой, которая может оказаться совсем немалой, достаточной для того, чтобы повлиять на движение дислокации.

В этом очерке мы преследуем две цели. Во-первых, хотим оценить величину силы F->, с которой электронный ветер «дует» на дислокацию единичной длины, и, во-вторых, обсудить эксперимент, в котором, по-моему, вполне убедительно показана реальность этой силы.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное