Читаем Живой кристалл полностью

В истории науки подобных примеров множество: появляется новая идея, или обнаруживается новое явление природы, и при этом вдруг оказывается, что ранее, в связи с совсем иными задачами и ввиду совсем иных целей, ученые высказали соображения или выполнили расчеты, которые имеют самое прямое отношение к новым, тогда еще неизвестным, а ныне появившимся идеям и обнаружившимся явлениям. В начале 30-х годов, создавая теорию дислокаций, физики столкнулись с необходимостью изучить напряжения, которые должны возникнуть вокруг дислокационной линии. Тут-то и оказалось, что великий итальянский математик Вито Вольтерра, который впоследствии прославился созданием математической теории борьбы за существование, еще в начале века решил задачу о распределении напряжений в толстостенной резиновой трубке, возникающих после того, как трубка разрезана вдоль образующей; в плоскости разреза части трубки друг относительно друга сдвинуты, а затем в этой же плоскости склеены. Конечно же, Вольтерра решал чисто математическую задачу из области теории упругости, совершенно не подозревая, что в кристаллах имеются дислокации и что найденное им решение имеет самое прямое отношение к вопросу о распределении напряжений вокруг дислокаций — и краевой, и винтовой.

Мы это легко поймем, если воспользуемся моделью «резиновая трубка» и реально проделаем с ней все то, что умозрительно проделывал математик Вольтерра, решая свою задачу. Возьмем толстостенную резиновую трубку, разрежем ее по образующей до отверстия. Для того чтобы моделировать краевую дислокацию, осуществим сдвиг вдоль радиуса трубки, а чтобы моделировать винтовую дислокацию — вдоль направления оси трубки. Осуществив сдвиг, склеим сдвинутые части трубки в плоскости разреза.

Обсудим подробнее нашу модель. Плоскость разреза, доведенного лишь до отверстия трубки, — аналог плоскости сдвига. Взаимный сдвиг частей трубки и затем их склейка в плоскости сдвига — аналог сдвига в кристалле, в котором сохраняется связь между частями кристалла, находящимися над и под плоскостью сдвига. Центральное отверстие в трубке — необходимая деталь модели. Если бы мы моделировали сдвиг не трубкой, а сплошным резиновым жгутом, вдоль той линии, где оканчивался разрез, при деформации должны были бы возникнуть огромные напряжения, а значит, и разрыв резины. Природа, разумеется, позаботилась о том, чтобы и вдоль линии дислокации в кристалле было подобие полого цилиндра. Такой канал есть и называется он ядром дислокации.

Итак, задача Вольтерра нам подсказала модель дислокации, а обсуждая модель, мы поняли, что вдоль дислокационной линии должно быть полое ядро. Пример обращенного пути: от математики к модели, а от модели к натуре.

Вернемся, однако, к вопросу о напряжениях вблизи дислокации. С помощью нашей модели мы можем воочию увидеть, как напряжения распределены вокруг ядра дислокации. Для этого, имея в виду краевую дислокацию, поступим так. На гладком торце трубки тонкими линиями нанесем квадратную сетку. Можно тушью, а можно — наклеив черные нитки. Затем разрежем трубку вдоль образующей до отверстия. После этого, моделируя краевую дислокацию, осуществим сдвиг по радиусу и в сдвинутом состоянии склеим части трубки по плоскости разреза. После сдвига и склейки сетка исказится: в тех направлениях, где действуют сжимающие напряжения, размер квадратика уменьшится, где действуют растягивающие напряжения — возрастет: и уменьшится и возрастет в тем большей степени, чем больше величина соответствующих напряжений. На приведенной фотографии видно: над плоскостью скольжения, где расположена лишняя полуплоскость, — действуют сжимающие напряжения. Видно также, что величина напряжений убывает с расстоянием от оси трубки и изменяется с углом между плоскостью скольжения и прямой, соединяющей ось трубки с той точкой, где напряжение определяется.

Аналогичный опыт можно сделать, моделируя винтовую дислокацию. Требующуюся для этого процедуру мы уже обсуждали.

Распределение напряжений вокруг дислокационной линии можно увидеть в опыте с реальным кристаллом, а не с моделью — резиновой трубкой. Дело в том, что сжатые и растянутые области кристалла обладают различными оптическими свойствами. Различие этих свойств обнаруживается поляризованным светом. Поэтому луч света, направленный вдоль оси дислокации, на выходе из кристалла будет ослаблен в различной степени. Благодаря этому и обнаружатся сжатые и растянутые области вблизи линии дислокации.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное