Читаем Живой кристалл полностью

Итак, теория встретилась с трудностью — залогом того, что не за горами ее усовершенствование. Оно появилось на кончике пера английского теоретика Франка, размышлявшего о структуре реального кристалла менее дисциплинированно, чем его предшественники. Он усмотрел слабую сторону теории Косселя и Странского в том, что, согласно их представлениям, идеальный зародыш разрастается в идеальный кристалл. Ни в зародыше, ни в кристалле нет дефектов, кристалл растет так, что на его поверхности наслаиваются идеальные атомные плоскости. Именно для этого Косселю и Странскому понадобился идеальный зародыш, который долго не желает появляться, если степень неравновесности невелика. Франк, однако, видел перед собой реальный кристалл, и его логика, очевидно, развивалась следующим образом. От двумерного зародыша надо отказаться. Если даже при очень малой степени неравновесности кристалл растет быстро, на его поверхности, видимо, существует не исчезающая в процессе роста ступенька, к которой пристраиваются одиночные атомы. В этом месте своих рассуждений Франк освободился от гипноза предшественников и высказал неожиданный фантастический домысел: неисчезающая ступенька. В теории Косселя и Странского роль ступеньки играет контур зародыша.

Но в этом случае ступенька должна появиться, разрастись и исчезнуть, когда слой полностью достроится. А по мысли Франка, такая ступенька должна быть всегда, не исчезая в процессе роста. Он предположил, что такая ступенька на поверхности есть следствие дефекта объема кристалла. Этот дефект Франк назвал винтовой дислокацией. Именно Франк поселил в кристалле винтовую дислокацию.

Проще всего представить себе винтовую дислокацию как некую линию, вокруг которой наслаивается кристалл в виде одной-единственной плоскости, подобно винтовой лестнице. Винтовая лестница часто «навинчивается» на центральный стержень. Вот его и следует считать моделью линии винтовой дислокации. Ступенька на поверхности — это обрыв атомной плоскости, накручивающейся вокруг линии винтовой дислокации. Чуть курьезно говоря, согласно Франку, кристалл, содержащий одну винтовую дислокацию, состоит из одной плоскости. Именно она и достраивается в процессе роста. Согласно Косселю и Странскому, плоскости зарождаются и завершают свой рост; согласно Франку, все время растет одна и та же плоскость. У Косселя и Странского — слоистый рост, у Франка — спиральный. Когда степень неравновесности велика, может осуществляться и механизм слоистого роста, а вот когда она мала — помирить эксперимент с теорией может лишь механизм спирального роста.

Мысль теоретика, родившего образ винтовой дислокации, многим вначале показалась фантастической и вызвала к себе настороженное отношение: фантазия, разумеется, необходима для развития науки, но фантазия должна иметь предел.

Но когда через несколько лет после работы Франка экспериментаторы доподлинно увидели так называемый спиральный рост, при котором на поверхности растущего кристалла обнаруживается развивающийся по спирали бугорок, настороженное и скептическое отношение к фантазии теоретика сменилось восторгом перед его проницательностью.

 

В наши дни спиральный рост по Франку — азбука теории роста кристаллов, винтовые дислокации в кристалле поселились прочно и, как выяснилось, определяют в его свойствах очень многое.

О многом рассказать я не могу. А вот о том, как винтовые дислокации участвуют в пластическом деформировании кристалла, расскажу. Как и в случае краевых дислокаций, это удобнее всего сделать, обсуждая один из простейших типов деформирования, а именно сдвиг одной части кристалла относительно другой.

Наличие в кристалле винтовой дислокации, пересекающей поверхность, обусловливает наличие на поверхности ступеньки — это мы уже знаем. Дополним это знание следующим сведением: наибольшая высота этой ступеньки есть вектор Бюргерса дислокации, он замыкает контур, внутри которого находится дислокационная линия.

Вот теперь проследим за сдвигом в кристалле, обусловленным движением винтовой дислокации, воспользовавшись очень простой моделью. Для ее создания необходимы небольшой кусок картона и ножницы. Немного надрежем картон ножницами и, не отделяя ножницы от картона, вглядимся в структуру его поверхности. Увидим: поверхность стала «винтовой», на ней появилась ступенька, высота которой у края картонки наибольшая, убывает вдоль лезвий ножниц и обращается в нуль в конце разреза. У нас есть все основания считать, что в конце разреза расположена линия винтовой дислокации, пронизывающая картон. Очевидно, если мы теперь продолжим работу ножниц, дислокационная линия будет перемещаться от одного края картонки в противоположный, и, когда эта линия пересечет картонку, ступенька превратится в полоску-уступ, шириной равный вектору Бюргерса. А это и означает, что осуществился взаимный сдвиг частей картонки, которая в принятой модели имитирует кристалл.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное