Читаем Живой кристалл полностью

Воспользуемся формулой для числовой оценки. Допустим, что среднее расстояние между дислокационными линиями 10-4 см. Это значит, что плотность подвижных дислокаций 0 108 см-2. Если в опыте дислокации успели сместиться приблизительно на расстояние между ними, то при b 3.10-8 см величина 3.10-4 , т. е. пластическая деформация произойдет на 0,03%. Это ни мало и ни много, а ровно столько, сколько должно быть при такой плотности дислокаций и при таком их смещении.

Из нашей формулы следует еще одно важное соотношение. Если ее левую и правую части поделить на время, в течение которого происходил сдвиг, то мы получим связь между скоростью пластического деформирования и средней скоростью движения дислокаций , так как = li /t. Эта связь подсказала идею огромного количества стереотипных опытов, которые проводились с различными кристаллами: измеряли скорость пластического деформирования кристалла, плотность дислокаций и вычисляли по этим данным скорость их движения.

Начали мы с обсуждения режима движения гусеницы и ковра со складкой, а окончили фундаментальной формулой теории дислокаций. По дороге, от начала очерка к его концу, логическая цепочка как будто бы не рвалась.


ВОСХОЖДЕНИЕ ДИСЛОКАЦИЙ


О «восхождении» дислокаций теперь пишут в серьезных научных книгах. Видимо, тому ученому, который впервые исследовал перемещение дислокаций с одной плоскости скольжения на другую плоскость, движение дислокации представилось подобным восхождению по ступеням лестницы. Именно этот образ и помог ему понять закономерности «восхождения».

Дислокация умеет перемещаться двумя различными механизмами — «скользить» в плоскости скольжения и «восходить» в направлении, перпендикулярном этой плоскости. Одновременно «скользя» и «восходя», дислокация может двигаться и под произвольным углом к плоскости скольжения. Со скольжением мы знакомы: знаем и о гусенице, и о ковре, и о реальной скользящей дислокации. В этом очерке — о восхождении.

Что происходит, когда краевая дислокация перемещается с данной плоскости скольжения на параллельную? Происходит вот что: незавершенная плоскость, ограниченная дислокационной линией, становится короче на величину расстояния между плоскостями. Произойти это может лишь в случае, если освобождающиеся при этом атомы диффузионно уйдут от дислокационной линии в кристалл. Поэтому для того, чтобы дислокация «восходила», нужно создать условия, при которых атомы будут диффузионно течь по направлению от линии. Впрочем, они могут течь и к линии и пристраиваться к незавершенной плоскости, удлиняя ее. В этом случае дислокация будет восходить в противоположном направлении, скажем так: нисходить.

Итак, дело за малым, надо обеспечить направленный диффузионный поток атомов. Этого можно добиться, прилагая к кристаллу сжимающие или растягивающие напряжения. Если кристалл сжать в направлении, перпендикулярном незавершенной плоскости, — вблизи дислокационной линии, т. е. там, где обрывается незавершенная плоскость, величина напряжений окажется большей, чем вдали от нее. Это означает, что вблизи дислокационной линии концентрация вакансий будет более низкой, чем вдали от нее, и, следовательно, к линии потекут вакансии или, что то же, атомы диффузионно потекут от линии и плоскость будет укорачиваться. В случае растягивающих напряжений все рассуждения обратятся: от линии потекут вакансии, к линии — атомы, плоскость удлиняется. В предыдущих рассуждениях, специально этого не оговорив, мы воспользовались зависимостью концентрации вакансий с от напряжений : создаем сжимающие напряжения — концентрация вакансий понижается, растягивающие — увеличивается. Установить количественную связь между с и величиной и знаком — дело не простое, не станем им заниматься. А вот качественно понять, в чем здесь дело, не сложно. Дело в том, что всесторонне сжимаемый кристалл обязан как-то уплотниться, и он это делает, лишаясь части пустоты в виде пустых узлов решетки — вакансий. А растягиваемый кристалл ведет себя диаметрально противоположно: подчиняясь растягивающим напряжениям, которые его вынуждают к увеличению объема, кристалл рождает пустоту в виде дополнительных вакансий. Интуиция подсказывает, что величина изменения концентрации вакансий и величина напряжений должны быть связаны зависимостью с ~ . Скажем, зависимость с ~ 2 не может иметь места, так как она означала бы нелепость: с не зависит от знака . Точный расчет подтверждает: зависимость с ~ .

Примитивно процесс диффузионного восхождения дислокации можно проиллюстрировать моделью: колодой скользких карт, одна из которых из колоды частично выдвинута. Если такую колоду сжать, выдвинутая карта выскользнет из нее, а если растянуть, карта упадет в колоду.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное