Читаем Живой кристалл полностью

Все то, о чем я сейчас пишу с уверенностью, на заре развития учения о дислокациях выглядело правдоподобной догадкой теоретиков. Особой почтительности и доверия эта догадка тогда не вызывала. Многими она воспринималась как свидетельство гибкости ума теоретиков, которые способны придумать еще и не такое! Но, когда появились первые экспериментальные доказательства реальности режима «гусеничного» движения в кристалле, идея дислокации обрела мощь и определила развитие огромной главы физики твердого тела — физики пластической деформации.

В этом очерке нам, пожалуй, следует сделать еще три дела: поглядеть на дислокацию в модели БНЛ, убедиться в том, что скольжение происходит в области кристалла, богатой дислокациями, и попытаться построить простейшую теорию пластического деформирования кристалла вследствие движения дислокаций.

Первая из задач решается совсем просто. Для этого достаточно взглянуть на приводимые фотографии ансамбля пузырьков с дислокацией. Чтобы лучше увидеть дислокацию, смотреть на фотографию надо не обычно сверху вниз, а почти параллельно плоскости листа, повернув при этом лист так, чтобы направление взгляда (оно обозначено стрелками) совпадало с диагональными рядами пузырьков.

На одной из фотографий представлена модель краевой дислокации, — ее мы узнаем легко. На другой — модель дислокационной петли. Собственно не всей петли, а ее сечения плоскостью фотографии. Образовалась эта петля так: из кристалла была удалена часть атомной плоскости в форме круглого диска, возникшая при этом полость «схлопнулась», при этом оставшаяся незавершенная плоскость (удален диск!) оказалась ограниченной замкнутой линией. Она и является дислокационной петлей.

Модель БНЛ дает возможность не только увидеть дислокации невооруженным глазом, но и проследить за тем, как расположены атомы вблизи конца незавершенной плоскости, или, как часто говорят, вблизи ядра дислокации. Для этого надо сделать простое построение. В той области фотографии, где расположена дислокация, проведем линии через центры пузырьков в рядах. Читатель это легко сделает самостоятельно и увидит, что о наличии дислокации осведомлены атомы (пузырьки!), которые отстоят от ядра дислокации на расстоянии трех-четырех периодов. В данном случае модель БНЛ дает качественную информацию о том, что имеет место в реальном кристалле вблизи дислокации.

Как и первая, вторая задача решается взглядом на фотографию. На фотографии представлена область скольжения в монокристалле. Видны выходы дислокаций на поверхность, тех самых, которые, перемещаясь, обусловливают взаимное скольжение частей кристалла. Строго говоря, видны, разумеется, не выходы дислокаций на поверхность, а результат растравливания специальным травителем тех мест, где линии дислокаций пересекают поверхность кристалла. В тех местах, которые растравливаются активнее, чем соседние, образуются «ямки травления». Вот они и видны.

Обратимся теперь к третьей задаче. Попробуем ее решить для очень упрощенного случая, а затем, когда получим конечную формулу, полагаю, с удовольствием заметим, что она справедлива и для любого другого случая, отличающегося от упрощенного.

Допустим (и в этом смысл упрощения!), что мы хотим осуществить сдвиг вдоль некоторой плоскости в кристалле, имеющем форму куба с ребром l0, в котором все дислокационные линии лежат в плоскостях, параллельных плоскости сдвига. Допустим, что боковая поверхность кристалла, имеющая площадь l02, пересекается дислокационными линиями, при этом в плоскости скольжения расположено п дислокационных линий. Эти дислокации и будут нас далее интересовать, так как именно они и определяют процесс скольжения вдоль избранной плоскости сдвига. Допустим, что в нашем опыте по сдвигу каждая из дислокационных линий еще не успела пройти путь l0 , а прошла какой-то более короткий путь li . Подвижная часть кристалла относительно неподвижной сместится при этом на расстояние

 

 Назовем эту величину плотностью подвижных дислокаций, обозначим ее 0 и запишем полученную формулу в окончательном виде:

= 0 bli

Удовлетворимся здесь приведенным формальным определением понятия «плотность дислокаций». Подробнее оно обсуждено немного дальше, в очерке о размножении и гибели дислокаций.

Чуть-чуть торжественно подведем итог: мы получили одну из фундаментальных формул теории дислокационного деформирования. Она фундаментальна потому, что входящие в нее величины уже потеряли связь с тем упрощенным примером, с которого мы начинали построение теории и в котором предполагалось, что дислокации движутся лишь в одной плоскости скольжения. Полученная формула этого уже не помнит, так как 0 — плотность всех дислокаций, движущихся в любой из возможных плоскостей скольжения.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное