Читаем Живой кристалл полностью

 где G — модуль сдвига. Так как G 1012 дин/см2, то = 1011 дин/см2. В действительности оказывается, что для осуществления сдвига, скажем, кристалла меди достаточно приложить напряжение около 108 дин/см2, т. е. в тысячу раз меньшее, чем предсказывает теория, основанная на представлении о сдвиге, который происходит одновременно по всей «плоскости сдвига».

После Френкеля многие теоретики уточняли эту оценку, но их уточнения лишь незначительно изменяли главный результат. Предположение о том, что сдвиг происходит одновременно вдоль всей плоскости, приводит к непомерно большим напряжениям, в тысячи раз превосходящим те, которые обнаруживаются в эксперименте. Френкель оказал огромную услугу проблеме прочности кристалла, вскрыв кричащее противоречие между теорией процесса скольжения и результатами эксперимента.

Теоретик, как правило, более подозреваем в ошибках, чем экспериментатор, который, в отличие от теоретика, свою правоту аргументирует фактами, а не такой зыбкой материей, как рассуждения. Рассуждения обычно считают вещью менее упрямой, чем факт. В случае френкелевской оценки дело обстоит особенно сложно, потому что, казалось бы, невозможно поставить такой опыт, в котором принятая им модель сдвига осуществлялась бы и сделанная оценка была бы экспериментально подтверждена или опровергнута. Действительно, экспериментировать с обычными реальными кристаллами и данном случае нельзя, так как в них практически всегда имеются различные дефекты, а и модель, и расчет Френкеля предполагают кристалл бездефектным, идеальным. И все же возможность осуществить такой эксперимент отыскалась. Он был поставлен почти через 20 лет после френкелевского расчета. В этом опыте экспериментировали не с кристаллами, а с моделью кристалла, построенной из мыльных пузырей.

С пузырьковой моделью БНЛ кристалла мы уже знакомы. Здесь немного скажем только о том, как ею воспользовались для проверки расчета Френкеля. В данном случае модель хороша тем, что она может быть бездефектной, а именно это главным образом и необходимо для проверки правильности расчета.

Моделируя сдвиг в совокупности идеально упорядоченных мыльных пузырьков, экспериментаторы измерили две величины: во-первых, по данным о деформации на самом раннем этапе, когда взаимное соскальзывание пузырьков еще не произошло, они определили модуль сдвига двумерного плота из пузырьков и, во-вторых, по этим же данным определили величину максимального усилия, необходимого для начала собственно сдвига. Оказалось: = G/20. В знаменателе формулы Френкеля стоит 2, а у экспериментаторов получилось 20. Расхождению в 3 раза можно не придавать особого значения, тогда как теория с результатами опытов над реальными кристаллами не согласуется в тысячи раз.

Следует обратить внимание на то, что в рассказанной истории модельный опыт сыграл не совсем свойственную ему роль. Он оказался источником информации, которую в опытах с кристаллами ранее получить не смогли. Оказывается, хорошая модель может и это.

Подведем итог. Модельный эксперимент подтверждает справедливость теории, в основе которой лежит представление о том, что сдвиг осуществляется одновременно по всей плоскости. Теория кричаще не согласуется с результатами опытов над реальными кристаллами. Естественно прийти к заключению, что представления, положенные в основу теории, не соответствуют процессам, происходящим в кристаллах, где скольжение происходит как-то не так, как это представлял себе Френкель в 1924 г. Теория явно нуждается в учете реальной структуры кристалла, т. е. факта наличия в кристаллах дефектов. Каких? В каком количестве?

С какими свойствами? До получения ответов на эти вопросы после работы Френкеля прошло 6 лет, в нашей книге все разъяснится в следующем очерке.


МОДЕЛИ: ДВИЖЕНИЕ ГУСЕНИЦЫ, ПЕРЕДВИЖЕНИЕ КОВРА


В этом очерке должно разъясниться то, что оставалось загадочным в предыдущем. Начнем издалека, с рас-суждений, которые покажутся очень удаленными от интересующего нас кристалла. И для рассуждений изберем модель, к кристаллу не имеющую пи малейшего отношения. Стараясь понять, как происходит скольжение в кристалле, мы будем обсуждать режим движения... гусеницы.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное