Читаем Живой кристалл полностью

Нам уже известно, что взаимодействие, т. е. конкуренция сил притяжения и отталкивания между атомами, обусловливает существование определенного расстояния l0 между ними. Уточним наше понимание «взаимодействия», проследив зависимость энергии этого взаимодействия W от расстояния l между атомами. Качественно ясно, что, если бы нам удалось атомы удалить друг от друга на бесконечное расстояние, энергия их взаимодействия стала бы равной нулю. Попросту говоря, бесконечно удаленные атомы друг о друге не осведомлены и поэтому между собой не взаимодействуют. Качественно ясно, что, как бы мы ни старались насильно сблизить соседние атомы, совместить их мы никогда не cможем, а это означает, что по мере уменьшения расстояния между атомами до нуля энергия отталкивания между ними должна стремиться к бесконечности. Собственно, при очень большом сжимающем давлении атомы могут «раздавливаться». Именно это и происходит, когда под давлением в миллионы атмосфер кристалл водорода металлизируется: раздавленные атомы водорода свой «личный» электрон отдают в коллективное пользование.

Качественно ясно также, что для того, чтобы исключить взаимодействие между соседними атомами, которые находятся на «равновесном» расстоянии l = l0, т. е. развести их на бесконечное расстояние, необходимо затратить вполне определенную энергию. Это означает, что при l = l0 энергия W = W0будет отрицательной: именно она характеризует прочность связей в кристалле. Чем больше отрицательное значение W0, тем прочнее связи между атомами, тем большую энергию надо потратить для того, чтобы испарить кристалл. Так как испарить кристалл — это значит развести составляющие его атомы на бесконечность, то, очевидно, энергия W0 и является мерой теплоты испарения.

Вот теперь мы можем нарисовать кривую зависимости W от l. Передаваемый рисунком характер зависимости энергии взаимодействия между атомами от расстояния между ними физики называют «потенциалом взаимодействия». Он является фундаментальной характеристикой кристалла.

Продолжим извлекать следствия из факта существования определенного расстояния между атомами. Так как l0и W0 — вполне определенные, конечные величины, а при удалении атомов их энергия взаимодействия принимает нулевое значение при l = , то кривая W (l) оказывается несимметричной относительно прямой, проходящей через точку l = l0. Очень важное следствие! Ведь оно означает, что с повышением температуры, когда тепловая энергия атомов возрастает, увеличивается не только амплитуда их колебаний, но и смещается в сторону больших значений l центр, вокруг которого эти колебания происходят, т. е. увеличивается «равновесное» расстояние между атомами. Попросту говоря, происходит тепловое расширение кристалла! На рисунке это обстоятельство изображено линией, которая проведена через середины отрезков, равных амплитудам колебаний атомов.

Здесь необходимо обратить внимание читателя на то, что и приведенные рассуждения, и иллюстрирующий их рисунок относятся к случаю, когда взаимодействуют лишь два атома, из которых один намертво закреплен в начале координат. В реальном кристалле все много сложнее: там и ближайших соседей несколько, и нет ни одного «начала координат». И все же приведенные рассуждения правильно передают физику обсуждаемых явлений. Заметьте: от простого факта существования кристалла логика естественно привела нас к необходимости его расширения с повышением температуры.

Коэффициент теплового линейного расширения , очевидно, должен быть связан с величинами, которые определяют и иные свойства и характеристики кристалла. Можно, например, ожидать, что чем прочнее связаны атомы в кристалле, т. е. чем больше модуль упругости E, тем меньше будет величина . Последнюю фразу следует воспринимать, разумеется, не как доказательство существования закономерности, а лишь как формулировку догадки о ней. А теперь попытаемся построже убедиться в существовании такой закономерности. Наших знаний теперь уже достаточно для того, чтобы вычислить коэффициент линейного расширения . Определяется он так:

Относительное изменение расстояния между двумя атомами при нагреве кристалла подчиняется закону Гука, т. е. происходит под действием эффективного напряжения = E. Именно модуль упругости характеризует прочность связи атомов в кристалле: прочнее связь — больше модуль. Наша задача, таким образом, сводится к тому, чтобы понять происхождение и оценить величину и, следовательно, , а затем и.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное