Читаем Живой кристалл полностью

Помните очерк о движении дислокаций в плоскости скольжения и аналогию между дислокациями движущимися одна за другой, и цепочкой туристов, идущих по тропке? Если температура кристалла высока, дислокации, остановившиеся перед непреодолимым стопором, диффузионно обходят его. А если температура невысока и, следовательно, диффузионная подвижность атомов мала, вблизи стопора будет происходить иное: головная дислокация у стопора остановится, движущаяся за ней приблизится на расстояние, немного меньшее того, которое было между этими дислокациями, когда они скользили беспрепятственно. Головная дислокация испытает при этом давление. Со временем оно будет нарастать по мере приближения последующих дислокаций цепочки. Если у препятствия затормозится ряд следующих друг за другом п дислокаций, головная дислокация будет испытывать на себе напряжение, n-кратно превосходящее внешнее, то, которое вынуждает дислокации скользить. Оно может оказаться настолько большим, что превзойдет прочность кристалла, сдерживающего напор дислокаций, и вблизи кристалла зародится клиновидная трещина. Она появится вследствие объединения ближайших к стопору дислокаций. Следующие дислокации как-бы проваливаются в зародившуюся трещину, и она подрастает. Пока дислокация скользила свободно, кристалл «тек», а когда встретился стопор и движение дислокаций затормозилось, появилась трещина. Все как и следовало из «общего соображения».

О трещине, возникшей «по Стро», следует кое-что рассказать. Во-первых, ее ширина будет тем больше, чем большее число дислокаций, объединившись, приняло участие в ее формировании. Если это число обозначить п, то ширина трещины будет равна пb, где b — вектор Бюргерса. О такой трещине иногда говорят так: дислокация с Еектором Бюргерса пb. Во-вторых, оказывается, что направление трещины с направлением плоскости скольжения образует угол, близкий к 70°. Не стану приводить расчеты, из которых эта величина следует, а лучше предложу читателю убедиться в правильности утверждения, проделав опыт с моделью кристалла в виде листа белой бумаги. Впервые мне его продемонстрировал профессор Е. Д. Щукин и подарил для этой книги две фотографии, иллюстрирующие последовательные этапы опыта, который он производил, так сказать, собственноручно.

Опыт прост. На листе белой бумаги нужно карандашом провести прямую линию — символ полосы скольжения. Затем на некотором ограниченном участке этой линии бритвой сделать в бумаге разрез. Именно вдоль него можно будет осуществить сдвиг, символизирующий результат скольжения дислокаций. Концы разреза — символы стопоров, далее которых сдвиг не смог и не сможет распространяться. А теперь лист следует положить на гладкий стол, прижать его к столу двумя руками, расположенными с двух сторон от карандашной линии, и, медленно сдвигая руки в противоположных направлениях, спровоцировать сдвиг. При этом бумага, разумеется, прорвется, но не вдоль карандашной линии, а в направлении, образующем с карандашной линией угол, близкий к 70°!

Посоветовав читателю сделать этот модельный опыт, я, разумеется, ничего ему не пояснил. Быть может, лишь помог возникновению интуитивного восприятия правильности одного из следствий теории Стро. А это, пожалуй, не так уж мало. Я тешу себя мыслью, что от модельного опыта, а заодно и от автора популярного изложения большего можно и не требовать.

Механизм «по Стро» — не просто правдоподобный вымысел теоретика. Этот механизм реально действует, особенно в тех случаях, когда деформируется кристаллическое тело, пересеченное множеством границ раздела между элементами его структуры. Граница обычно играет роль стопора, и вблизи нее возникает трещина.

Все рассказанное о механизме возникновения трещины «по Стро» дает основание для важного замечания. Почему, собственно, кристалл «согласился» поселить в себе трещину? А потому, что, образовав ее, дислокации, скопившиеся перед стопором, освободились от действующих на них сил. Вообще говоря, есть, например, уже обсуждавшаяся нами возможность диффузионно обойти препятствие и переместиться в другую плоскость скольжения над или под препятствием, как бы обойти его, а затем скользить в этой другой плоскости, где стопора нет. Напомним еще раз, что при низкой температуре этот процесс не может происходить! Это одна из причин того, что при низкой температуре кристаллы хрупки, а при высокой — пластичны.

На этом, пожалуй, можно окончить рассказ о механизме появления трещины «по Стро» и перейти к рассказу о механизме «по Коттреллу». Коттрелл — английский физик-теоретик.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука