Читаем Живой кристалл полностью

Экспериментальных работ по акустической эмиссии кристаллов, обусловленной дислокациями, очень не много. Я расскажу лишь об одном опыте, о том, который мне и понравился больше иных, и вызвал полное к себе доверие. Поставлен он был харьковскими кристаллофизиками В. С. Бойко, Р. И. Гарбером и их сотрудниками. Авторы этого опыта воспользовались тем, что во многих кристаллах, в частности и кристалле кальцита, с которым они и экспериментировали, под влиянием извне приложенной сосредоточенной нагрузки (ее можно создать нажатием на лезвие клина, касающегося поверхности кристалла) получаются скопления большого количества однотипных дислокаций.

Они образуют стенку, концы которой касаются поверхности кристалла. При снятии внешней нагрузки эти скопления покидают кристалл, с большой скоростью дислокации выходят за его пределы. Акт выхода сопровождается сильной акустической эмиссией. Возникающий звуковой сигнал очень четко можно зарегистрировать осциллографом. Для того чтобы не принять желаемое за действительное, авторы опыта с помощью скоростной кинокамеры следили за выходом дислокаций. Момент выхода дислокаций и момент всплеска звука совпали. Убедительный опыт!

Теперь о практических приложениях, точнее, об одном из них, очень важном и очень красивом. В 1959 г. немецкий физик Кайзер, изучая акустическую эмиссию металлов, обнаружил, что, если образец, который под влиянием определенной внешней нагрузки звучал, освободить от этой нагрузки, а потом повторно нагрузить, он зазвучит лишь при условии, если повторная нагрузка превзойдет начальную. В физической литературе это явление именуется «эффект Кайзера». Зная о нем, представьте себе, что некоторый полый сосуд мы герметически закроем металлической мембраной и опустим его в море на некоторую глубину, где к мембране будет приложено напряжение, обусловленное гидростатическим давлением,

σh = dgh,

(d — плотность воды, g — ускорение свободного падения, h — глубина погружения). В воде, согласно Кайзеру, мембрана «вызвучит» все, что должна «вызвучать» при напряжении σh. После извлечения из воды ее следует вынудить начать звучать под влиянием внешней, точно измеряемой нагрузки σ* > σh . Этим самым мы узнаем у мембраны, на какой глубине она находилась. Очевидно, на глубине h = σ*/dg. Таким образом, способность кристалла издавать звуки может быть использована для создания глубиномеров. Я рассказал лишь об общей идее, на которой основан акустический глубиномер. При ее осуществлении возникает много трудностей и ограничений. Трудности преодолеваются, ограничения учитываются.


В КРИСТАЛЛЕ ВОЗНИКАЕТ ТРЕЩИНА

Понятия «трещина», «треснуло» настолько будничны, что кажутся само собой разумеющимися. Треснуло — значит появилась трещина! Появилась трещина — значит треснуло! Между тем трещина заслуживает и, по праву, требует пристального внимания к себе. Ведь только что мы сформулировали сентенцию: «треснуло — значит появилась трещина». А с этим не могут мириться ни конструкторы, создающие машины, ни машины, работающие по замыслу конструкторов.

Итак, о том, как в кристалле поселяется трещина. Возможностей поселить в себе трещину у кристалла — множество! Я хочу рассказать о двух механизмах возникновения трещины в кристалле. О тех, которые отличаются наглядностью и оказываются действующими во многих реальных ситуациях.

Вначале одно общее соображение. Кристаллы под влиянием приложенных к ним усилий должны деформироваться. Если возникающие в кристалле напряжения достаточно велики, его деформация со временем будет нарастать. Хочется сказать: кристалл будет «течь». Так вот, если кристаллу ничто не мешает свободно «течь», он и будет «течь», сохраняя сплошность, а если свободно течь ему нечто мешает, в нем под влиянием нагрузки может возникнуть трещина! Соображение общее, и поэтому такие расплывчатые слова, как «ничто» и «нечто», не должны вызывать протеста. Говоря о течении кристалла, я имею в виду, что под влиянием приложенной нагрузки со временем его деформация нарастает, как, скажем, это могло бы происходить с нагретой до высокой температуры стеклянной нитью, к которой подвешен груз. Сейчас важны не конкретные детали, а общая мысль о том, что трещина может возникнуть, если свободная деформация кристалла, его течение почему-либо запрещено. Только эта мысль!

Теперь о двух конкретных механизмах возникновения трещин. Один из них был понят и описан английским ученым Стро и очень скоро вошел в плоть науки о реальном кристалле. Так бывает часто: ранее неизвестное со временем (и иной раз очень скоро!) кажется само собой разумеющимся. Говорят, что новая идея последовательно вызывает две реакции: вначале — «этого не может быть!», а затем — «иначе и быть не может!». Пожалуй, именно такая судьба оказалась и у идеи механизма появления трещины «по Стро». Вот посудите сами.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука