Читаем Живой кристалл полностью

Экспериментально реальность напряжения σ обнаруживается в эффекте, который последние годы изучается очень тщательно и экспериментаторами, и теоретиками. Эффект состоит в том, что при переходе металла из нормального в сверхпроводящее состояние, когда электронное торможение исчезает, пластичность металла скачкообразно увеличивается. Этот эффект, который мог бы наблюдаться и на заре изучения сверхпроводимости, долго себя не проявлял, а в конце 60-х годов обнаружился во многих лабораториях мира.

Вот теперь очерк можно закончить.


РАЗМНОЖЕНИЕ И ГИБЕЛЬ ДИСЛОКАЦИЙ

Ансамблю дислокаций в кристалле свойственны эти два непременных признака жизни любой популяции: и размножение, и гибель составляющих ее индивидуумов. В книге о живом кристалле нельзя промолчать о том, как размножаются и как исчезают дислокации.

Вначале о размножении. О том, что оно должно происходить, теоретики обязаны были подумать сразу же, как только сочли, что деформация кристалла происходит вследствие движения дислокаций. Их логика должна была быть простой и прямолинейной. Кристалл, как известно, способен значительно деформироваться, и в течение длительного времени. Для этого наличных в нем дислокаций, которые, перемещаясь, «выходят из игры», может оказаться недостаточно, и, следовательно, необходимо появление новых. В том, что дело обстоит именно так, легко убедиться, если воспользоваться уже встречавшейся нам формулой, которая определяет связь между величиной деформации ε, плотностью подвижных дислокаций ρ0 и величиной перемещения каждой из них li. Если мы сочтем, что все дислокации «выйдут из игры», пройдя максимальный путьlmax, то деформация, согласно нашей формуле, окажется следующей:


εmax = ρ0blmax .


Опыт свидетельствует о том, что в реальных кристаллических телах величина lmax оказывается небольшой, приблизительно равной 10-3—10-2 см; пройдя такой путь, дислокации «выходят из игры» по разным причинам: либо достигают границы зерна, либо выходят за пределы образца, либо, встретив стопор, теряют подвижность, а следовательно, и способность вносить вклад в формирование кристалла. При ρ0 ≈ 107 см-2 и b ≈ 3• 10-8 см оказывается, что εmax = 10-4 - 10-3. А в действительности, благодаря движению дислокаций, кристалл может деформироваться в несравненно большей степени. Это и означает, что в процессе деформирования в нем, видимо, должны рождаться новые подвижные дислокации.

Когда речь идет о размножении живых организмов, имеется в виду увеличение числа особей. В случае дислокаций имеется в виду нечто иное, а именно увеличение их плотности. А так как плотность дислокаций ρ0 = £/V , где £ — суммарная протяженность дислокационных линий в объеме V, то под размножением следует понимать увеличение £. Итак, оказывается, что размножение дислокации есть попросту ее удлинение.

Вот теперь можно поговорить о конкретном механизме размножения. Об одном из многих. В литературе он называется механизмом Франка — Рида.

Практически все необходимое для того, чтобы понять этот механизм, уже было рассказано в очерке о «росе», тормозящей движение дислокаций. После того, как участок дислокационной линии, заторможенный двумя неподвижными «росинками»-стопорами, напряжением σ > σ max будет «продавлен» сквозь стопоры, в плоскости скольжения он превратится в замкнутый круг и в участок дислокационной линии между стопорами. Этот участок так же может превращаться в круг, повторив предыдущий цикл. Он окажется очагом размножения дислокационной линии, так как ее суммарная длина в этом процессе возрастает. Разумеется, до тех пор, пока действует напряжение, способное «продавить» заторможенный участок дислокационной линии сквозь стопоры. Рисунок это отчетливо иллюстрирует.

В кристалле могут быть и одиночные замкнутые петли, и полупетли, которые обоими концами выходят на поверхность кристалла. Их расширение или сжатие также приводит к размножению или гибели дислокаций.

Коротко о механизмах «гибели» дислокаций. Один из механизмов может быть обратным тому, который приводил к размножению. Действительно, если перестать дуть в трубку, на торце которой расположен мыльный пузырь, он через трубку выдавит из себя газ и «схлопнется». Подобно этому «схлопнется» и замкнутая дислокационная линия («петля»), если внешние напряжения перестанут ее растягивать. То же относится и к «полу-петле», которая не замкнута на себе, а выходит на поверхность кристалла.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука