Читаем Живой кристалл полностью

Вначале оценим силу F. Для того чтобы это сделать, нужно представить себе, каким препятствием для движущихся электронов является дислокация. Задачу о взаимодействии между электронами и дислокацией теоретики решают, пользуясь сложным арсеналом средств теоретической физики. Мы же, упрощая реальную ситуацию, сочтем, что в механизме рассеяния электронов линия дислокации единичной длины с вектором Бюргерса b эквивалентна пластиночке шириной b см и длиной в 1 см, т. е. площадью S = b см. 1см = b см2. Такое приближение приходит в голову и кажется разумным потому, что на расстоянии ≈ b от плоскости скольжения расположение атомов в кристалле «забывает» о том, что в нем содержатся дислокации. Сочтем также, что те электроны, которые сталкиваются с пластинкой, подменяющей дислокацию, будут полностью передавать ей свой импульс, т. е. оказывать на пластинку давление

Итак, формула есть. Она оказалась практически такой же, какую получили физики-теоретики, и, следовательно, наше упрощение реальной ситуации не увело нас далеко от правды.

Теперь, глядя на формулу, надо понять, в какой мере сила может повлиять на судьбу дислокации. Лучше задать вопрос в другой формулировке: какой должна быть сила или, в конечном счете, плотность тока j, чтобы электронный ветер мог заметно повлиять на движение дислокации? Естественно предположить, что для этого напряжение σ = F/b, создаваемое силой вблизи дислокации, должно быть того же порядка, что и механическое напряжение σ*, необходимое для смещения дислокации с места. Для этого необходима плотность тока, следующая из предыдущей формулы,

столько впечатляющая, что хочется произнести ее вслух: десять миллионов ампер на квадратный сантиметр. При такой оценке тока у экспериментатора могут опуститься руки и исчезнуть надежда обнаружить влияние электронного ветра на дислокации. Оказалось, однако, что эффект обнаруживается в очень простых опытах. Впрочем, «оказалось» не с первой попытки, а лишь через тринадцать лет после того, как эффект был предсказан теоретиками.

Расскажу об опытах, в которых был обнаружен эффект увлечения дислокаций электронным ветром. Эти опыты действительно очень просты. Вначале между двумя медными пластинками зажимался монокристальный шарик меди радиуса R ≈ 2.10-2 см и слегка сдавливался. Результат такого опыта предопределен: на двух полюсах шарика, в местах их соприкосновения с пластинками, образовывались одинаковые круглые контактные площадки. Их радиус был r ≈ 5. 10-4 см. Понятно, почему возникали площадки: вещество шарика в виде участков атомных плоскостей вдавливалось в его объем одинаково на двух полюсах, где все происходило симметрично. Легко понять, что контур вдавливаемых плоскостей есть замкнутая дислокационная линия. Для того чтобы последнюю фразу понять отчетливее, поглядим на рисунок, на котором схематически изображено возникновение дислокационной петли при вдавливании в кристалл части его вещества.

Теперь опыт можно усложнить, во время сжатия пропуская через шарик постоянный ток /. Так как площадь контакта шарик — плоскость мала (S = πr2 см2), то для получения плотности тока j* ≈ 107 А/см2 нужно через образец пропустить не такой уж большой ток: I = j* •S ≈10 А.

В таком опыте оказывается, что на противоположных полюсах шарика контактные площадки имеют разные радиусы: больше на том полюсе, где движение дислокаций при сжатии шарика и направление тока совпадают, и меньше там, где они направлены противоположно. Результат качественно ясен: в первом случае «ветер» попутный, он ускоряет движение дислокаций от полюса по направлению к центру шарика, а во втором — «ветер» направлен противоположно движению дислокаций и, следовательно, тормозит это движение.

Эффект наблюдался экспериментально. Из опытов, проводившихся при разных токах, экспериментаторы сумели определить отношение σ*/Р ≈ 3•1025 см-2•с-1, что соответствует разумным значениям Риσ* , которые приведены выше. Обе цели мы достигли: построена элементарная теория и обсужден эксперимент.

Прежде чем окончить этот очерк, хочется обратить внимание читателя на явление, как бы противоположное электронному ветру, увлекающему дислокации. Состоит оно вот в чем. Если в металле электроны движутся лишь хаотически, не участвуя в направленном движении, т. е. через металл ток не течет, а дислокации в процессе пластической деформации перемещаются направленно, они будут испытывать трение вследствие столкновения с электронами «покоящегося» газа. Сила этого трения в расчете на дислокационную линию единичной длины, очевидно, будет описываться формулой, которая уже нам встречалась:


F= bneυP ,


если под υ понимать не скорость дрейфа электронов, а скорость движения дислокаций.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука