Читаем Живой кристалл полностью

Обсудим случай, когда крупинки почему-либо вообще не могут двигаться и по отношению к дислокации окажутся неподвижными стопорами, мешающими ее движению. А дислокация должна была бы двигаться, так как извне к ней приложено некоторое напряжение. Оно должно вызвать пластическое деформирование кристалла, которое не может происходить, если дислокации неподвижны. Под влиянием приложенных напряжений участок дислокационной линии, расположенный между двумя стопорами, должен будет изгибаться, подобно натягиваемой тетиве лука. Но изгиб дислокационной линии означает ее удлинение, а следовательно, увеличение связанной с ней энергии. Это вполне достаточное основание для того, чтобы дислокация сопротивлялась изгибающим усилиям, чтобы появлялось напряжение, противодействующее тому, которое приложено извне.

Иной образ, иная модель: все происходящее с застопоренным участком дислокационной линии очень подобно тому, что происходит с пленкой мыльного пузыря, выдуваемого на соломинке. По мере того как плоская мембрана из мыльной пленки, закрывающей торец соломинки, начинает выгибаться под влиянием давления газа, увеличивается противодавление, обусловленное изгибом мембраны. Это давление, как известно, равно Р = 2Рл = 4α/R, где Рл — лапласовское давление, множителем 2 учтено наличие двух поверхностей у мыльной пленки, R — радиус ее изгиба, α — поверхностное натяжение. Легко себе представить, что радиус изгиба пленки меняется от бесконечной величины, когда пленка в виде плоской мембраны перекрывает торец соломинки, до величины, соответствующей радиусу раздутого пузыря. Минимальное значение радиус изогнутой пленки принимает тогда, когда она становится полусферической, опирающейся на периметр соломинки, как на экватор: Rтiп = d/2, d — диаметр соломинки. Из рассказанного следует, что для того, чтобы раздуть мыльный пузырь, надо в трубке создать давление, превосходящее Рmах = 8α/d. При таком давлении раздуваемая пленка станет полусферической, и ее дальнейший рост, когда R > d/2, требует уже меньшего давления газа.

Теперь, пожалуй, ясно: для того чтобы «продавить» участок дислокационной линии в зазоре между двумя неподвижными стопорами, расстояние между которыми l, нужно преодолеть некоторое максимальное, создаваемое дислокацией, напряжение σmах. Расчет показывает, что σmах определяется формулой

σmах = 2Gb/l ,

подобной той, которая определяет Ртах для мыльного пузыря. Дело в том, что α — величина поверхностного натяжения пленки, а Gb — величина, пропорциональная линейному натяжению дислокационной линии. Так как G ≈ 1012 дин/см2, b ≈ 3.10-8 см, то при l ≈ 10-4 см оказывается σmах ≈ 6.108 дин/см2. То есть для того, чтобы заставить дислокацию двигаться, надо приложить к ней очень большие напряжения. То же другими словами: если росинки-стопоры расположены вдоль дислокации и если к дислокации приложено напряжение σ < σmах, она окажется неподвижной. Очень важное заключение! Композиторам сплавов оно подсказывает отличную идею: если хочешь воспрепятствовать пластичности кристалла, введи в него такую примесь, которая в виде росинок осядет вдоль дислокаций и застопорит их. Хочешь добиться сопротивляемости кристалла деформированию вплоть до высоких напряжений, посади на дислокации стопоры-росинки почаще. Оставим в стороне вопрос о том, как эти идеи осуществить в конкретной ситуации. «Как» — это вопрос очень конкретный. Его решают технологи применительно к конкретным сплавам. А вот общая идея застопорить дислокации выделениями — это то, что заслужило внимание и ученых, и технологов всех рангов.

Возможность осадить «росу» вдоль дислокационной линии нашла себе еще одно применение. Хочется сказать: красивое применение. Вспомните: перед восходом солнца паутина, усеянная росой, видна значительно отчетливей, чем после того, когда солнечные лучи испарят росинки. Капельки росы декорируют невидимые волоски паутины, и они становятся видимыми. Потеряв росинки, нити паутины как бы исчезают.

В прозрачных кристаллах можно сделать видимыми дислокационные линии, если их продекорировать посторонними частицами. Отлично это, в частности, получается, если вдоль дислокаций в кристалле NаСl осадить частицы серебра.

Для этого очерка я подобрал фотографию, на которой видны дислокации, продекорированные серебром. Для полноты аналогии выбран такой участок кристалла, где дислокационные линии образуют зримое подобие паутины.


ЕЩЕ РАЗ ОБ ЭЛЕКТРОННОМ ВЕТРЕ

Еще раз к электронному ветру мы обратимся в связи с тем, что в ходе нашего повествования в кристалле поселились дислокации. Электронный ветер, обдувая дислокацию, будет действовать на нее с некоторой силой, которая может оказаться совсем немалой, достаточной для того, чтобы повлиять на движение дислокации.

В этом очерке мы преследуем две цели. Во-первых, хотим оценить величину силы F, с которой электронный ветер «дует» на дислокацию единичной длины, и, во-вторых, обсудить эксперимент, в котором, по-моему, вполне убедительно показана реальность этой силы.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука