В качестве примера границы между блоками мозаики обсудим простейшую границу, которая состоит из краевых дислокаций с одинаково ориентированными векторами Бюргерса. Воспользовавшись схемой такой границы, легко убедиться в том, что вектор Бюргерса
φ ≈
Если φ
рад, тоГраницу между мозаичными блоками можно промоделировать методом БНЛ: неподалеку один от другого надо выдуть два небольших скопления из пузырьков, сделать их края ровными, а затем скопления приблизить до соприкосновения. Мы это делали. Изменили угол ориентации между скоплениями и увидели много интересного в строении границы между блоками.
Мозаичные блоки и границы между ними — более чем полувековой объект исследований многих лабораторий мира. Добавим: важный объект, так как структура границы и размеры блока определяют очень многое в свойствах реальных кристаллов. А начало этих исследований восходит к тем работам, с рассказа о которых очерк начат.
ОПЫТЫ ПРОФЕССОРА ЛУКИРСКОГО
Опыты эти были поставлены в условиях, не располагавших к академическим исследованиям. 1944 г., война, большая комната Казанского университета шкафами условно разделена на несколько маленьких, в каждой из них — группа физиков Ленинградского физико-технического института, эвакуированного в Казань. В одной из импровизированных комнаток — сотрудники профессора Петра Ивановича Лукирского. Много дел связано с работой на оборону (ими и занят профессор со своими сотрудниками), и как дань естественной любознательности ищущего ученого — опыты с монокристаллами каменной соли. Эти опыты стали классикой кристаллофизики, о них и рассказ.
И по замыслу, и по осуществлению опыты, о которых я буду рассказывать, очень подобны и отличаются лишь формой изучавшегося образца. В одном из опытов длительному высокотемпературному отжигу подвергался тщательно отполированный цилиндр монокристалла каменной соли. Ось цилиндра была ориентирована параллельно ребру куба естественной огранки кристалла.
Результат опыта: до отжига цилиндр бесшумно скатывался по слегка наклоненной поверхности стекла, а после отжига скатывание сопровождалось равномерным постукиванием, как если бы на поверхности цилиндра появились ребра — четыре ребра, равно отстоящих одно от другого. Эти ребра можно и увидеть, рассматривая отожженный цилиндр в отраженном свете.
В другом опыте такому же отжигу подвергалась тщательно отполированная монокристальная сфера. Результат опыта: при рассматривании отжигавшейся сферы в отраженном свете на ее поверхности можно отчетливо увидеть фигурные блики, соответствующие выходу осей симметрии второго (эллиптический блик!), третьего (треугольный блик!) и четвертого (квадратный блик!) порядка. (Некоторая прямая в кристалле называется осью симметрии
Общий результат обоих опытов можно сформулировать так: кристаллы соли, которым принудительно придана не свойственная им цилиндрическая или сферическая форма, стремятся к восстановлению формы куба — своей естественной огранки. Кристаллографы говорят «естественного габитуса». Высокая температура в этих опытах нужна лишь для того, чтобы придать активность какому-нибудь механизму переноса вещества кристалла, необходимому для формирования «естественного габитуса». Кристаллы, разумеется, предпочтут тот из механизмов, который обеспечит им возможность поскорее избавиться от принудительно заданной формы. Живой кристалл как бы не желает уступать черты первородства и борется за них.
Стремление к естественной огранке обусловлено тем, что среди несметного числа прочих мыслимых она обеспечивает наименьшую поверхностную энергию кристалла яри данном его объеме. Потому она и «естественная». К этой естественной огранке обязывает термодинамика, которая применительно к задаче об огранении кристалла выступает в форме правила Кюри — Вульфа. Первая фраза абзаца передает основную идею этого правила, мудрого и красивого своей простотой.
Правило Кюри — Вульфа может показаться противоречащим не менее мудрому утверждению геометрии, согласно которому из всех тел данного объема минимальную поверхность имеет сфера, и поэтому, если сферический монокристалл стремится к уменьшению поверхностной энергии, ему, казалось бы, не следует ограняться, так как при этом его поверхность лишь увеличится! Поверхность действительно увеличится — геометрия права! А вот энергия уменьшится, потому что при огранении исчезают участки поверхности, которые имеют большую удельную поверхностную энергию, и развиваются участки поверхности, представленные в «естественном габитусе», которые имеют малую поверхностную энергию. Проигрывается поверхность, но выигрывается энергия!