Читаем Живой кристалл полностью

Не будем уточнять тонкости и сочтем, что смачивает! Именно потому, что смачивает, снег, лежащий на берегу реки, намокает, так как вода всасывается в пористый снег, состоящий из мельчайших льдинок, смачиваемых ею. И потому же в снежных хижинах (они называются «иглу») вода не стекает со стен и потолка, так как всасывается снегом. И поэтому же в поставленном нами опыте отлично можно было наблюдать, как расплавленный жидкий ментол, который можно переохладить до комнатной температуры, охотно наползает на иглу кристаллического ментола, касающуюся поверхности расплава. Кинограмма, помещенная в очерке, отчетливо это иллюстрирует.

Итак, сочтем, что жидкость смачивает собственный кристалл. Из этого обстоятельства естественно следует, что энергетически выгодно закрыть собственным расплавом поверхность кристалла, что поверхностная энергия кристалла αк больше, чем поверхностная энергия двух новых образовавшихся границ: кристалл — жидкость αк_ж и жидкость — пар αж_ п. Очевидно, если один квадратный сантиметр поверхности кристалла будет закрыт пленкой расплава, то поверхностная энергия, связанная с кристаллом, уменьшится, т. е. выделится энергия


Δα = αк — (αк_ж + αж_ п) > 0.


Казалось бы, «зная» о такой возможности уменьшить энергию поверхности, кристаллы должны были бы автоматически становиться мокрыми, «запотевать», и мы должны были бы жить в мире мокрых кристаллов. Их запотевание, однако, становится достижимым лишь при температурах, очень близких к температуре плавления кристалла.

Не станем пытаться вычислять ту температуру, при которой кристалл «запотеет», покроется пленкой жидкости и о нем можно будет с полным основанием сказать: он мокрый. Расчет сделать не просто, да и нужды в этом нет. А вот понять, почему кристалл не всегда мокрый, а покрывается пленкой только при высокой температуре накануне плавления, — в этом нужда есть, и сделать это мы попытаемся.

Собственная жидкая пленка на поверхности кристалла, говоря канцелярским языком, возникает, так сказать, в порядке подготовки к расплавлению кристалла. Когда температура кристалла заметно ниже температуры его плавления, давление находящегося над ним пара (Р)существенно ниже давления пара над расплавом (Рl). При этом на поверхности кристалла жидкая пленка возникнуть не может, а если бы она и возникла, то была бы вынуждена немедленно испариться. В этих условиях на поверхности кристалла могут существовать уходящие в пар и возвращающиеся из пара адсорбированные одиночные атомы вещества кристалла. С повышением температуры, когда Р приближается к Рl , концентрация этих неупорядоченно двигающихся по поверхности адсорбированных атомов увеличивается, и где-то совсем вблизи температуры плавления они образуют слой жидкости, жидкую пленку. За сколько градусов до температуры плавления она появится? Это сильно зависит и от характера, и от величины сил связи между атомами в кристалле. Этак, за сотую или тысячную градуса до той температуры плавления кристалла, которая указана в справочниках. Если дело обстоит так, как мы предположили вначале, а именно если жидкость смачивает собственный кристалл, то возникшая жидкая пленка при дальнейшем нагреве кристалла (на 10-2 или 10-3 °С) будет утолщаться, пронижет весь кристалл, и он расплавится!

Из наших рассуждений естественно вытекает два тесно взаимосвязанных следствия. Первое: кристалл нельзя перегревать, так как при температуре более низкой, чем температура плавления, на его поверхности зарождается жидкость. Второе: расплавление кристалла можно представить как следствие утолщения жидкой пленки, возникшей на его поверхности. Такова природа вещей. Переохладить расплав можно, так как прежде, чем он начнет кристаллизоваться, в нем должен образоваться жизнеспособный зародыш, а этот процесс нуждается в затрате некоторой энергии. А перегреть кристалл нельзя, так как прежде, чем он достигнет температуры плавления, на его поверхности возникнет зародыш жидкой фазы в виде пленки, появление которой сопровождается не поглощением, а выделением энергии.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука