Читаем Живой кристалл полностью

Здесь необходимо обратить внимание читателя на то, что и приведенные рассуждения, и иллюстрирующий их рисунок относятся к случаю, когда взаимодействуют лишь два атома, из которых один намертво закреплен в начале координат. В реальном кристалле все много сложнее: там и ближайших соседей несколько, и нет ни одного «начала координат». И все же приведенные рассуждения правильно передают физику обсуждаемых явлений. Заметьте: от простого факта существования кристалла логика естественно привела нас к необходимости его расширения с повышением температуры.

Коэффициент теплового линейного расширения γ, очевидно, должен быть связан с величинами, которые определяют и иные свойства и характеристики кристалла. Можно, например, ожидать, что чем прочнее связаны атомы в кристалле, т. е. чем больше модуль упругости E, тем меньше будет величина γ. Последнюю фразу следует воспринимать, разумеется, не как доказательство существования закономерности, а лишь как формулировку догадки о ней. А теперь попытаемся построже убедиться в существовании такой закономерности. Наших знаний теперь уже достаточно для того, чтобы вычислить коэффициент линейного расширения γ. Определяется он так:

Относительное изменение расстояния между двумя атомами при нагреве кристалла подчиняется закону Гука, т. е. происходит под действием эффективного напряжения σ = εE. Именно модуль упругости характеризует прочность связи атомов в кристалле: прочнее связь — больше модуль. Наша задача, таким образом, сводится к тому, чтобы понять происхождение и оценить величину σ и, следовательно, ε, а затем и γ.

Программа ясна, выполнить ее несложно. Когда мы нагреваем кристалл на ∆Т градусов, каждый из его атомов получает дополнительную энергию теплового движения k ∆Т. Здесь k — известная со школьной скамьи постоянная Больцмана. Если эта энергия расходуется лишь на то, чтобы увеличить расстояние между соседними атомами, то, видимо, рассуждать можно так. С одной стороны, дополнительная энергия равна k ∆Т. С другой стороны, ее можно представить в виде произведения объема, приходящегося на один атом, ω, на то эффективное напряжение σ, действию которого атом подвержен. Строго я это доказывать здесь не стану, а только обращу внимание читателя на то, что если умножить объем, имеющий размерность см3, на напряжение, имеющее размерность эрг/см3, то получится эрг, т. е. действительно энергия. Итак, из условия k ∆Тσω следует, что σk ∆Т. Таким образом,

Дело сделано, действительно оказывается, что с ростом Е убывает γ. Так как для металлов Е ≈ 1012 эрг/см3, ω ≈ 3.10-23 см3, а постоянная Больцмана k = 1,38• 10-16 эрг/К, то γ ≈ 4• 10-6 К-1. Эта величина близка к той, которую можно найти в справочных таблицах.

Можно примыслить мудрого теоретика, который развил бы изложенную логику до наблюдения теплового расширения твердых тел и таким образом предсказал бы его. В действительности, однако, события развивались в обратном порядке. Тепловое расширение не могли не наблюдать еще первобытные, а их «теоретики» заведомо не были изощрены в потенциалах взаимодействия.

Оставим рассуждения в стороне и попробуем промоделировать взаимодействие между атомами. Весь ход зависимости энергии взаимодействия от расстояния между атомами моделировать сложно, а вот ту ее часть, которая соответствует притяжению между атомами и на предыдущем рисунке изображена пунктиром, мы промоделируем легко и просто, воспользовавшись моделью БНЛ.

Для нашего моделирования надо ухитриться создать на некотором расстоянии друг от друга всего два одинаковых мыльных пузырька. Удобно проводить опыт с пузырьками, диаметр которых 1—2 мм.

Разобщенные пузырьки без нашего вмешательства вначале очень медленно, а затем, ускоряясь, будут двигаться навстречу друг другу, пока не столкнутся. Столкнувшись, они соприкоснутся не в точке, а как бы вдавятся один в другой. Это хорошо видно на рисунке на с. 15.

Оказывается (именно так: оказывается!), что с изменением расстояния между пузырьками энергия их взаимодействия изменяется по закону, очень близкому к тому, которому подчиняются атомы в металлах. Следя за тем, как изменяется скорость сближения двух одинаковых пузырьков с уменьшением расстояния между ними, можно установить свойственный им ход зависимости W(l). Так вот получается, что зависимость W(l) для пузырьков диаметром ≈ 1 мм почти такая же, как для атомов никеля. Речь, разумеется, идет не о количественном совпадении кривых, а об их ходе. По-моему, очень интересно!


ОТКРЫТИЕ ДЮЛОНГА И ПТИ

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука