Часть информации о памяти мы получили из знаний о гиппокампе и прилежащих к нему областях мозга, где располагается центр формирования памяти. В 1953 году 27-летнему пациенту Генри Молисону удалили гиппокамп в обоих полушариях, чтобы избавить мужчину от эпилептических припадков. После операции у Молисона обнаружилась глубокая амнезия: он утратил способность формировать новые воспоминания и усваивать новые факты. Как ни удивительно, но Генри все же смог обучиться ограниченному набору новых навыков (например, зеркальному чтению), хотя у него не отложилось воспоминаний о самом обучении. Как показали исследования Бренды Милнер[56] и ее коллег, память Молисона о событиях, произошедших до операции, оставалась почти в норме. Его случай сфокусировал внимание ученых на гиппокампе: в частности, их заинтересовал вопрос, почему эта структура играет решающую роль в заучивании фактов, но не критична для удержания их в памяти11.
А дело в том, что гиппокамп играет в обучении вр
Так каким же образом воспоминания переезжают со станции Гиппокамп на постоянные квартиры в коре головного мозга? Одно из предположений таково: устойчивое сохранение достигается не с первого раза, когда некий паттерн активности проходит через кору; напротив, чтобы воспоминание в ней закрепилось, гиппокамп должен несколько раз реактивировать эту дорожку. Отсюда можно предположить, почему гиппокамп необходим для закрепления воспоминания: ему необходимо снова и снова проигрывать паттерны для коры13. Попадая в кору, воспоминания со временем стабилизируются. В случае с Молисоном было иначе: повторные активации отсутствовали, а значит, отсутствовали и воспоминания. Система сохранилась такой же, какой и была.
Подобное перемещение воспоминаний наблюдается во многих областях мозга. Предположим, вы выучили новые ассоциации: красный квадрат означает, что надо поднять руку вверх, синий круг — хлопнуть в ладоши. Со временем, после должной тренировки, вы сможете быстрее реагировать на эти знаки. Пока вы обучаетесь данному навыку, в определенных областях мозга (например, в хвостатом ядре) легко заметить изменения в ответ на подкрепляемые вознаграждением ассоциации. Однако если вы продолжите поднимать руку и хлопать в ладоши, соответствующая активность в конце концов обнаружится в других областях мозга (в префронтальной коре). В данном отделе нейроны меняются медленнее, и это наводит на предположение, что первая область преподает полученные знания второй14.
Еще пример: когда вы первый раз встаете на ролики, вам приходится все время следить за движениями рук и ног и прикладывать массу сознательных усилий. Но после многодневной практики вы уже не думаете, как двигать ногой или рукой, а проделываете движения автоматически. Так происходит потому, что структуры мозга, вовлеченные в моторное научение (базальные ганглии), передают выученное другим отделам, в данном случае мозжечку.
Идея переадресовки поступающих пакетов воспоминаний помогает разрешить дилемму стабильности — пластичности, но открытым остается вопрос ограниченности «складского пространства». Если вы отгружаете свои пакеты по всему миру, никаких затруднений не возникает. Но если вы просто переправляете их на другой склад, то вместе с ними перемещается и проблема свободных складских площадей, ведь второй склад тоже вскоре заполнится.
Все эти соображения выводят нас на исходную точку пути к третьему, более углубленному решению.
Открытие феномена синаптических изменений побудило тысячи исследователей к подробному описанию этого явления и изучению его молекулярных структур. Однако усиление и ослабление синапсов не только не единственный, но еще и не самый важный механизм памяти15. Результаты изучения данных процессов на протяжении десятилетий свидетельствуют о том, что синаптическая пластичность важна для обучения и запоминания, но свидетельств того, что этого достаточно, нет.