Читаем Живой мозг. Удивительные факты о нейропластичности и возможностях мозга полностью

Возможно, изменение силы синапсов — всего лишь способ, с помощью которого взаимосвязанные клетки уравновешивают возбуждение и торможение, чтобы не допускать эпилепсии (перевозбуждение) или выключения сознания (сверхторможение). В этом свете синаптические изменения представляются последствиями сохранения воспоминаний, но никак не основным механизмом памяти. Исследователи — как теоретики, так и экспериментаторы — уделяют наибольшее внимание изменениям в отдельных синапсах, не принимая в расчет подобные процессы, порожденные активностью других компонентов системы. При таком подходе нейробиология рискует упустить из виду часть Розеттского камня[57] памяти и так и не найти ключи к окончательной расшифровке ее механизма. На самом деле в нервной системе мы повсюду обнаруживаем настраиваемые параметры. У Матушки-природы предусмотрены тысячи уловок для накопления мелких изменений, каждое из которых способно изменять поведение сети.

Представьте, что вы внеземное существо, впервые обнаружившее новую форму жизни — человека. Разве вас не озадачит такое множество подвижных частей и структур, совместно образующих живую систему, именуемую человеческим мозгом? Наблюдая, как люди взаимодействуют между собой в повседневной жизни, ваши инопланетные глаза с высокой разрешающей способностью начнут замечать изменения в формах нейронов под влиянием приобретаемого опыта, скажем рост или усыхание дендритов. Сфокусировав взгляд, вы заметите изменение объема сигнальных химических веществ, продуцируемых одной клеткой в ходе коммуникации с другой, а также изменение числа рецепторов при приеме химического месседжа. Вас восхитят своей изощренностью молекулярные и ионные каскады внутри нейронов, осуществляющие вычисления и подстройки в ответ на каждый новый стимул. В нейронном ядре вы увидите, как замысловатые химические структуры прикрепляются к извилистым нитям ДНК, вызывая большую экспрессию одних генов и подавляя другие.

Вас, вероятно, поставит в тупик столь сложно устроенная система, в которой пластичность проявляется повсеместно, во всех механизмах. Они все гибко-подвижны. Параметры меняются на всех уровнях и во всех масштабах, от роста и встраивания новых рождающихся нейронов до изменений в экспрессии генов. Когда биологическая система допускает такое огромное количество степеней свободы, возможности для стратегий сохранения памяти беспредельны.

В сущности, у нас имеется много надежных оснований считать, что синапсы не единственное, что меняется. Во-первых, если обучение только настраивает эффективность действующих синапсов, нам не следовало бы ожидать крупных перемен в структуре мозга. Однако при его визуализации можно видеть значительные перемены, когда, например, добровольцы в ходе экспериментов учатся жонглировать, студенты-медики готовятся к экзаменам или лондонские таксисты заучивают схему расположения улиц16. Кортикальные изменения не сводятся только к модификации синапсов, а, судя по всему, предполагают добавление нового клеточного материала17.

Во-вторых, если воспоминания просто удерживаются в матрице синаптических весов, у нас нет причин ожидать нейрогенеза, то есть роста и встраивания в систему новых нейронов18. По идее, когда новоиспеченные нейроны, порождаемые гиппокампом, будут втискиваться в сеть, следовало бы ожидать, что они рискуют спутать тонкий синаптический узор. Тем не менее они успешно находят дорогу во взрослую кору. Эти нейроны не лишние, их можно направить на формирование памяти. Например, если тренировать крысу на выполнение задания, требующего участия гиппокампа, число новых нейронов, генерируемых мозгом, удваивается по сравнению с базовым уровнем. И наоборот, если задание не требует участия гиппокампа, число новых нейронов в мозге крысы не изменится19.

В-третьих, в результате колебания уровней сахаров и белков вокруг ДНК изменяются паттерны экспрессии генов20. Исследования в этой относительно новой области — эпигенетике — показывают, что жизненный опыт вносит свои поправки в определение того, какие гены подавляются, а какие усиливаются. В качестве примера отметим, что мышата, воспитывающиеся в благоприятных условиях (мать часто вылизывает их и ухаживает за шерсткой), демонстрируют пожизненные изменения в паттернах молекул, которые прикрепляются к нитям ДНК, что, как выясняется, на всю жизнь снижает тревоги и страхи детенышей, а также повышает заботливость в отношении уже их потомства21. Таким образом ваш жизненный опыт проникает под кожу — и еще глубже, до уровня экспрессии генов, где может встроиться на длительный срок.

Перейти на страницу:

Похожие книги